Skip to main content
Log in

On some phase equilibrium features of charged black holes in flat spacetime via Rényi statistics

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Motivated by the nonextensive nature of entropy in the gravitational context and the Gauge/Gravity duality, black hole thermodynamics has been attracting intense emphasis in the literature. Along the present work, we investigate some features of the phase structure and critical phenomena of the 4-dimensional charged black holes in asymptotically flat spacetime within the formalism of Rényi statistics. First, we explore the extended phase space via the Rényi statistics approach. Concretely, based on the modified version of the Smarr formula, we recall the equal-area law to remove the oscillatory non-physical region in the \(P_R-V\) and \(T_R-S_R\) planes. Then, the coexistence curves are determined, as well as the latent heat of phase change. Moreover, we prove that the critical exponent describing the behavior of the order parameter near the critical point is \(\frac{1}{2}\), which is consistent with Landau’s theory of continuous phase transition. Lastly, we apply the Hamiltonian approach to Rényi thermodynamics which provides a new and solid mathematical basis for the extension of phase space and puts more insight into an expected and profound possible connection between the nonextensivity Rényi parameter \(\lambda \) and the cosmological constant \( \Lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bardeen, J.M., Carter, B., Hawking, S.W.: The Four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-De Sitter space. Commun. Math. Phys. 87, 577 (1983)

    ADS  MathSciNet  Google Scholar 

  3. Banerjee, R., Modak, S.K., Roychowdhury, D.: A unified picture of phase transition: from liquid–vapour systems to AdS black holes. JHEP 10, 125 (2012)

    ADS  Google Scholar 

  4. Haldar, A., Biswas, R.: Thermodynamic variables of first-order entropy corrected Lovelock-AdS black holes: \(P-V\) criticality analysis. Gen. Relativ. Gravit 50(6), 69 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Lemos, J.P.S., Lopes, F.J., Minamitsuji, M., Rocha, J.V.: Thermodynamics of rotating thin shells in the BTZ spacetime. Phys. Rev. D 92(6), 064012 (2015)

    ADS  Google Scholar 

  6. Myung, Y.S., Moon, T.: Thermodynamic and classical instability of AdS black holes in fourth-order gravity. JHEP 04, 058 (2014)

    ADS  Google Scholar 

  7. Hendi, S.H., Panahiyan, S., Panah, B.E., Jamil, M.: Alternative approach to thermodynamic phase transitions. Chin. Phys. C 43(11), 113106 (2019)

    ADS  Google Scholar 

  8. Hendi, S.H., Nemati, A., Lin, K., Jamil, M.: Instability and phase transitions of a rotating black hole in the presence of perfect fluid dark matter. Eur. Phys. J. C 80, 296 (2020)

    ADS  Google Scholar 

  9. Hendi, S.H., Hajkhalili, S., Jamil, M., Momennia, M.: Stability and phase transition of rotating Kaluza–Klein black holes. Eur. Phys. J. C 81, 1112 (2021)

    ADS  Google Scholar 

  10. Düztaş, K., Jamil, M.: Overcharging dilaton black holes in (2 + 1) dimensions to extremality and beyond. Int. J. Geom. Methods Mod. Phys. 17(14), 2050207 (2020)

    MathSciNet  Google Scholar 

  11. Kubiznak, D., Mann, R.B.: Black hole chemistry. Can. J. Phys. 93(9), 999–1002 (2015)

    ADS  Google Scholar 

  12. Kubiznak, D., Mann, R.B., Teo, M.: Black hole chemistry: thermodynamics with Lambda. Class. Quantum Gravity 34(6), 063001 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Karch, A., Robinson, B.: Holographic black hole chemistry. JHEP 12, 073 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Gregory, R., Scoins, A.: Accelerating black hole chemistry. Phys. Lett. B 796, 191–195 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Astefanesei, D., Mann, R.B., Rojas, R.: Hairy black hole chemistry. JHEP 11, 043 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Dehghani, A., Hendi, S.H.: Charged black hole chemistry with massive gravitons. Class. Quantum Gravity 37(2), 024001 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Dehghani, A., Hendi, S.H., Mann, R.B.: Range of novel black hole phase transitions via massive gravity: triple points and \(N\)-fold reentrant phase transitions. Phys. Rev. D 101(8), 084026 (2020)

    ADS  MathSciNet  Google Scholar 

  18. Dehghani, A., Hossein Hendi, S.: Nonlinearly charged black hole chemistry with massive gravitons in the grand canonical ensemble. Phys. Rev. D 104(2), 024025 (2021)

    ADS  MathSciNet  Google Scholar 

  19. Chabab, M., El Moumni, H., Khalloufi, J.: On Einstein-non linear-Maxwell–Yukawa de-Sitter black hole thermodynamics. Nucl. Phys. B 963, 115305 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Kumar, A., Ghosh, S.G., Maharaj, S.D.: Nonsingular black hole chemistry. Phys. Dark Univ. 30, 100634 (2020)

    Google Scholar 

  21. Abe, S.: General pseudoadditivity of composable entropy prescribed by the existence of equilibrium. Phys. Rev. E 63, 061105 (2001)

    ADS  Google Scholar 

  22. Biró, T.S., Ván, P.: Zeroth law compatibility of nonadditive thermodynamics. Phys. Rev. E 83, 061147 (2011)

    ADS  Google Scholar 

  23. Rényi, A.: On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hung. 10(1), 193–215 (1959)

    MathSciNet  MATH  Google Scholar 

  24. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Mejrhit, K., Ennadifi, S.-E.: Thermodynamics, stability and Hawking-Page transition of black holes from non-extensive statistical mechanics in quantum geometry. Phys. Lett. B 794, 45–49 (2019)

    ADS  MathSciNet  Google Scholar 

  26. Tannukij, L., Wongjun, P., Hirunsirisawat, E., Deesuwan, T., Promsiri, C.: Thermodynamics and phase transition of spherically symmetric black hole in de sitter space from Rényi statistics. Eur. Phys. J. Plus 135(6), 500 (2020)

    Google Scholar 

  27. Promsiri, C., Hirunsirisawat, E., Liewrian, W.: Thermodynamics and Van der Waals phase transition of charged black holes in flat spacetime via Rényi statistics. Phys. Rev. D 102(6), 064014 (2020)

    ADS  MathSciNet  Google Scholar 

  28. Czinner, V.G., Iguchi, H.: Rényi entropy and the thermodynamic stability of black holes. Phys. Lett. B 752, 306–310 (2016)

    ADS  Google Scholar 

  29. Czinner, V.G., Iguchi, H.: Thermodynamics, stability and Hawking-Page transition of Kerr black holes from Rényi statistics. Eur. Phys. J. C 77(12), 892 (2017)

    ADS  Google Scholar 

  30. El Moumni, H., Masmar, K., Mazzou, S.: Critical phenomena of charged dilatonic black holes through Rényi statistics approach. Int. J. Mod. Phys. D 31(05), 2250040 (2022)

    Google Scholar 

  31. Promsiri, C., Hirunsirisawat, E., Liewrian, W.: Solid-liquid phase transition and heat engine in an asymptotically flat Schwarzschild black hole via the Rényi extended phase space approach. Phys. Rev. D 104(6), 064004 (2021)

    ADS  Google Scholar 

  32. Promsiri, C., Hirunsirisawat, E., Nakarachinda, R.: Emergent phase, thermodynamic geometry, and criticality of charged black holes from Rényi statistics. Phys. Rev. D 105(12), 124049 (2022)

    ADS  Google Scholar 

  33. Barzi, F., El Moumni, H.: On rényi universality formula of charged flat black holes from hawking-page phase transition. Phys. Lett. B 833, 137378 (2022)

    MATH  Google Scholar 

  34. Guo, X.-Y., Li, H.-F., Zhang, L.-C., Zhao, R.: Microstructure and continuous phase transition of a Reissner–Nordstrom–AdS black hole. Phys. Rev. D 100(6), 064036 (2019)

    ADS  MathSciNet  Google Scholar 

  35. Spallucci, E., Smailagic, A.: Maxwell’s equal area law for charged Anti-deSitter black holes. Phys. Lett. B 723, 436–441 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Spallucci, E., Smailagic, A.: Maxwell’s equal area law and the Hawking-Page phase transition. J. Gravity 2013, 525696 (2013)

    Google Scholar 

  37. Belhaj, A., Chabab, M., El moumni, H., Masmar, K., Sedra, M.B.: Maxwell’s equal-area law for Gauss–Bonnet–Anti-de Sitter black holes. Eur. Phys. J. C 75(2), 71 (2015)

    ADS  Google Scholar 

  38. Wei, S.-W., Liu, Y.-X.: Clapeyron equations and fitting formula of the coexistence curve in the extended phase space of charged AdS black holes. Phys. Rev. D 91(4), 044018 (2015)

    ADS  MathSciNet  Google Scholar 

  39. Belhaj, A., Chabab, M., El Moumni, H., Masmar, K., Sedra, M.B., Segui, A.: On heat properties of AdS black holes in higher dimensions. JHEP 05, 149 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Baldiotti, M.C., Fresneda, R., Molina, C.: A Hamiltonian approach to thermodynamics. Ann. Phys. 373, 245–256 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Baldiotti, M.C., Fresneda, R., Molina, C.: A Hamiltonian approach for the thermodynamics of AdS black holes. Ann. Phys. 382, 22–35 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Haldar, A., Biswas, R.: Thermodynamics of \(d\)-dimensional charged AdS (Anti-de Sitter) black holes: Hamiltonian approach and Clapeyron equation. Mod. Phys. Lett. A 34(22), 1950170 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Ruppeiner, G.: Thermodynamic curvature and phase transitions in Kerr-Newman black holes. Phys. Rev. D Part. Fields Gravit. Cosmol. 78(2), 1–13 (2008)

    MathSciNet  Google Scholar 

  44. Wei, S.W., Liu, Y.X.: Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition. Phys. Rev. Lett. 115(11), 1–5 (2015)

    Google Scholar 

  45. Zhang, L.-C., Zhao, H.-H., Zhao, R., Ma, M.-S.: Equal area laws and latent heat for \(d\)-dimensional RN-AdS black hole. Adv. High Energy Phys. 2014, 816728 (2014)

    MATH  Google Scholar 

  46. Miao, Y.-G., Zhen-Ming, X.: Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in \(\text{ AdS}_5\) spacetime. Eur. Phys. J. C 77(6), 403 (2017)

    ADS  Google Scholar 

  47. Nguyen, P.H.: An equal area law for holographic entanglement entropy of the AdS-RN black hole. JHEP 12, 139 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Wei, S.-W., Liu, Y.-X.: Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition. Phys. Rev. Lett. 115(11), 111302 (2015). [Erratum: Phys.Rev.Lett. 116, 169903 (2016)]

  49. Wei, S.-W., Liu, Y.-X., Mann, R.B.: Repulsive interactions and universal properties of charged Anti–de Sitter black hole microstructures. Phys. Rev. Lett. 123(7), 071103 (2019)

    ADS  MathSciNet  Google Scholar 

  50. Guo, X.-Y., Li, H.-F., Zhang, L.-C., Zhao, R.: Continuous phase transition and microstructure of charged AdS black hole with quintessence. Eur. Phys. J. C 80(2), 168 (2020)

    ADS  Google Scholar 

  51. Chabab, M., El Moumni, H., Iraoui, S., Masmar, K., Zhizeh, S.: More insight into microscopic properties of RN–AdS black hole surrounded by quintessence via an alternative extended phase space. Int. J. Geom. Meth. Mod. Phys. 15(10), 1850171 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Wei, S.-W., Liu, Y.-X., Mann, R.B.: Ruppeiner geometry, phase transitions, and the microstructure of charged AdS black holes. Phys. Rev. D 100(12), 124033 (2019)

    ADS  MathSciNet  Google Scholar 

  53. Miao, Y.-G., Zhen-Ming, X.: On thermal molecular potential among micromolecules in charged AdS black holes. Phys. Rev. D 98, 044001 (2018)

    ADS  Google Scholar 

  54. Ghosh, A., Bhamidipati, C.: Contact geometry and thermodynamics of black holes in AdS spacetimes. Phys. Rev. D 100(12), 126020 (2019)

    ADS  MathSciNet  Google Scholar 

  55. Johnson, C.V.: Holographic heat engines. Class. Quantum Gravity 31, 205002 (2014)

    ADS  MATH  Google Scholar 

  56. Banados, M., Teitelboim, C., Zanelli, J.: Black hole entropy and the dimensional continuation of the Gauss–Bonnet theorem. Phys. Rev. Lett. 72, 957–960 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Faulkner, T., Lewkowycz, A., Maldacena, J.: Quantum corrections to holographic entanglement entropy. JHEP 11, 074 (2013)

    ADS  MATH  Google Scholar 

  58. El Moumni, H.: Revisiting the phase transition of AdS–Maxwell-power-Yang–Mills black holes via AdS/CFT tools. Phys. Lett. B 776, 124–132 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Jusufi, K., Azreg-Aïnou, M., Jamil, M., Saridakis, E.N.: Constraints on barrow entropy from M87* and S2 star observations. Universe 8(2), 102 (2022)

    ADS  Google Scholar 

  60. Martínez-Merino, A., Sabido, M.: On superstatistics and black hole quasinormal modes. Phys. Lett. B 829, 137085 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. El Moumni.

Ethics declarations

Conflict of interest

The author declares that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzi, F., El Moumni, H. & Masmar, K. On some phase equilibrium features of charged black holes in flat spacetime via Rényi statistics. Gen Relativ Gravit 55, 109 (2023). https://doi.org/10.1007/s10714-023-03158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03158-9

Navigation