Skip to main content
Log in

Algebraic properties of Riemannian manifolds

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Algebraic properties are explored for the curvature tensors of Riemannian manifolds, using the irreducible decomposition of curvature tensors. Our method provides a powerful tool to analyze the irreducible basis as well as an algorithm to determine the linear dependence of arbitrary Riemann polynomials. We completely specify 13 independent basis elements for the quartic scalars and explicitly find 13 linear relations among 26 scalar invariants. Our method provides several completely new results, including some clues to identify 23 independent basis elements from 90 quintic scalars, that are difficult to find otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The ’t Hooft symbols, dubbed by physicists, were first introduced in [45, 46] as quantities (dubbed “tensor rotors”) connecting a self-dual bivector to a vector in, so-called, “rotor space” and an anti-self-dual bivector to a complex conjugated rotor. See also [47]. The ’t Hooft symbols have played an important role for instanton physics in Yang-Mills gauge theory [51].

  2. There may be a subtlety for pseudo-tensors since the Wick rotation of the Levi-Civita tensor will introduce an extra imaginary factor \(i=\sqrt{-1}\). However, since the pseudo-tensor contains only an odd number of the Levi-Civita tensors, such a subtlety can be easily dealt with.

  3. Therefore, the result for an Einstein manifold can easily be converted to the result for the Weyl tensor of a general Riemannian manifold using the relation (3.17) which can be written as \(W_{abcd} = R^E_{abcd} - \frac{1}{12} R (\delta _{ac} \delta _{bd} - \delta _{ad} \delta _{bc})\) where \(R^E_{abcd}\) is the Riemann tensor given by (3.25). See, for example, Eqs. (3.21) and (3.22).

  4. Our approach can also be applied to pseudo-tensors. For example, we get

    $$\begin{aligned}{} & {} \varepsilon ^{b_1 b_2 b_3 b_4} R_{a a_1 b_1 b_2} R_{b a_3 a_1 a_2} R_{a_2 a_3 b_3 b_4} = - 16 \left( f^{i_1 i_3}_{(++)} f^{i_1 i_2}_{(++)} f^{i_3 i_2}_{(++)} - f^{i_1 i_3}_{(--)} f^{i_1 i_2}_{(--)} f^{i_3 i_2}_{(--)} \right) \delta _{ab}. \end{aligned}$$

    However, pseudo-tensors also have as many basis elements as normal tensors, and systematically classifying them as in Ref. [35] is a new problem. We leave this issue as a problem addressed in the future. But, it would be possible to know how to generate a pseudo-scalar basis that is parity odd, as we will discuss later.

  5. We found several errors in Ref. [50]. These are corrected in “Appendix D”. Rectification of such errors played a crucial role in finding the correct independent basis.

  6. There is a subtle element: \(Q_5^{\text {odd}} = \text {Tr} \left( B^T B A_+ B A_- + B B^T A_- B^T A_+ \right) \). This is parity even in itself but the odd power of the matrix B. If this combination were allowed at the quintic order, a similar term \( \text {Tr} \left( B^T B A_+ B + B^T A_- B^T B \right) \) would also be allowed at the quartic order. But this term did not appear at the quartic order. So we rule out \(Q_5^{\text {odd}}\). The result in Table 3 alludes that a term of odd powers of B is only possible in the form of \(\textrm{det}B\) because \(\textrm{det}B = \textrm{det}B^T\).

  7. Therefore, Eqs. (D.6) and (5.10) can be rewritten as the identity

    $$\begin{aligned} \frac{R^4}{32} - 12 R^2 \text {Tr} A_\pm ^2 + 128 R \text {Tr} A_\pm ^3 - 768 \text {Tr} A_\pm ^4 + 384 \text {Tr} \big ( A_\pm ^2 \big ) \text {Tr} \big ( A_\pm ^2 \big ) = 0 \end{aligned}$$

    for any symmetric \(3 \times 3\) matrix \(A_\pm \) with \(R = 8 \text {Tr} A_+ = 8 \text {Tr} A_-.\)

  8. Note that the result in [35] was missing the parity odd elements. We have discussed above how these can be restored.

  9. Using the matrix notation (4.26), \(\textrm{det}f^{ij}_{(+-)}\) can be written as \(\textrm{det}B = \frac{1}{3} \text {Tr} B^3 - \frac{1}{2} \text {Tr} B \, \text {Tr} B^2 + \frac{1}{6} \big (\text {Tr} B \big )^3\). This expression appeared in Eq. (4) of Ref. [30] and was used to reduce independent invariants.

  10. The expression for these 14 basis elements is quite complicated and not illuminating, so will not be displayed here. But we can e-mail the result to those who request it.

  11. Eq. (11) in Ref. [50] contains a sign error: \(\cdots - 9 R^2 R_{ab} R_{ab} + R^4 \rightarrow \cdots + 9 R^2 R_{ab} R_{ab} - R^4\).

  12. We used Mathematica (www.wolfram.com) and the add-on package MathSymbolica (www.mathsymbolica.com) for calculation of the quartic Riemann monomials, \(A \sim Z\), and the linear relations, \((a) \sim (l)\). We verified the results by numerical tests using randomly generated numbers for the coefficients \(f^{ij}_{(\pm \pm )}\) and \(f^{ij}_{(\pm {{\mp }})}\), and hence, we believe that our results are error-free.

  13. Eq. (19) in Ref. [50] was derived using Eq. (18), but Eq. (18) contains typographic errors. The rectified version must read as \(- 2 R^2 R_{abcd}^2 \rightarrow + 2 R^2 R_{abcd}^2\) and \(-\frac{64}{3} R R_{ab} R_{bc} R_{ca} \rightarrow + \frac{64}{3} R R_{ab} R_{bc} R_{ca}\).

References

  1. Gautreau, R., Anderson, J.L.: Phys. Lett. A 25, 291 (1967)

    Article  ADS  Google Scholar 

  2. Israel, W.: Phys. Rev. 164, 1776 (1967)

    Article  ADS  Google Scholar 

  3. Ellis, G.F.R., Schmidt, B.G.: General Relat. Grav. 10, 989 (1979)

    Article  ADS  Google Scholar 

  4. Petrov, A.Z.: Einstein Spaces. Pergamon, Oxford (1969)

    Book  MATH  Google Scholar 

  5. Penrose, R., Rindler, W.: Spinors and Space-Time, vol. 2. Cambridge University Press, Cambridge (1986)

    Book  MATH  Google Scholar 

  6. Plebański, J., Stachel, J.: Einstein tensor and spherical symmetry. J. Math. Phys. 20, 269 (1968)

    Article  ADS  MATH  Google Scholar 

  7. McIntosh, C.G.B., Foyster, J.M., Lun, A.W.-C.: The classification of the Ricci and Plebański tensors in general relativity using Newman-Penrose formalism. J. Math. Phys. 22, 2620 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zakhary, E., Carminati, J.: A new algorithm for the segre classification of the trace-free ricci tensor. General Relat. Grav. 36, 1015 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ehler, J., Kundt, W.: Exact solutions of the gravitational field equations. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. John Wiley & Sons, New York (1962)

    Google Scholar 

  10. Karlhede, A.: A review of the geometrical equivalence of metrics in general relativity. General Relat. Grav. 12, 693 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Coley, A., Hervik, S., Pelavas, N.: Spacetimes characterized by their scalar curvature invariants. Class. Quantum Grav. 26, 025013 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Weinberg, S.: Gravitation and Cosmology. John Wiley & Sons, New York (1972)

    Google Scholar 

  13. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  14. Gibbons, G.W.: Quantum field theory in curved spacetime. In: Hawking, S.W., Isreal, W. (eds.) General Relativity: An Einstein centenary survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  15. DeWitt, B.S.: Quantum gravity: the new synthesis. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein centenary survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  16. Vilkovisky, G.A.: Effective action in quantum gravity. Class. Quantum Grav. 9, 895 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. Amsterdamski, P., Berkin, A.L., O’Connor, D.J.: \(b_8\) ‘Hamidew’ coefficient for a scalar field. Class. Quantum Grav. 6, 1981 (1989)

    Article  ADS  MATH  Google Scholar 

  18. MacCallum, M.A.H.: Computer algebra in gravity research. Living Rev. Rel. 21, 6 (2018)

    Article  Google Scholar 

  19. Martín-García, J.M., Portugal, R., Manssur, L.R.U.: The Invar tensor package. Comp. Phys. Commun. 177, 640 (2007)

    Article  ADS  MATH  Google Scholar 

  20. Haskins, C.N.: On the invariants of quadratic differential forms. Trans. Am. Math. Soc. 3, 71 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  21. Narlikar, V.V., Karmarkar, K.R.: The scalar invariants of a general gravitational metric. Proc. Indian Acad. Sci. A 29, 91 (1948)

    MathSciNet  MATH  Google Scholar 

  22. Harvey, A.: On the algebraic invariants of the four-dimensional Riemann tensor. Class. Quantum Grav. 7, 715 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Géhéniau, J., Debever, R.: Les invariants de courboure de l’space de Riemann à quatre dimensions. Bull. Acad. R. Belg. Cl. Sc. XLII, 114 (1956)

    MATH  Google Scholar 

  24. Géhéniau, J.: Les invariants de courboure des espaces Riemanniens de la relativité. Bull. Acad. R. Belg. Cl. Sc. XLII, 252 (1956)

    MATH  Google Scholar 

  25. Debever, R.: Étude géométrique du tenseur de Riemann-Christoffel des espaces de Riemann à quatre dimensions. Bull. Acad. R. Belg. Cl. Sc. XLII, 313, 608 (1956)

    MATH  Google Scholar 

  26. Witten, L.: Invariants of General Relativity and the Classification of Spaces. Phys. Rev. 113, 357 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Safko, J.L., Witten, L.: Some Properties of Cylindrically Symmetric Einstein-Maxwell Fields. J. Math. Phys. 12, 257 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  28. Greenberg, P.J.: The algebra of the Riemann curvature tensor in general relativity: Preliminaries. Stud. Appl. Math. 51, 277 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sobczyk, G.: Space-time algebra approach to curvature. J. Math. Phys. 22, 333 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sneddon, G.E.: On the algebraic invariants of the four-dimensional Riemann tensor. Class. Quantum Grav. 3, 1031 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Carminati, J., McLenaghan, R.G.: Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space. J. Math. Phys. 32, 3135 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sneddon, G.E.: The identities of the algebraic invariants of the four-dimensional Riemann tensor. J. Math. Phys. 37, 1059 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zakhary, E., McIntosh, C.G.B.: A Complete Set of Riemann Invariants. General Relat. Grav. 29, 539 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Bonanos, S.: A new spinor identity and the vanishing of certain Riemann tensor invariants. General Relat. Grav. 30, 653 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Fulling, S.A., King, R.C., Wybourne, B.G., Cummins, C.J.: Normal forms for tensor polynomials: I. The Riemann tensor. Class. Quantum Grav. 9, 1151 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Oh, J.J., Yang, H.S.: Einstein manifolds as Yang-Mills instantons. Mod. Phys. Lett. A 28, 1350097 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Oh, J.J., Park, C., Yang, H.S.: Yang-Mills instantons from gravitational instantons. JHEP 04, 087 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Lee, J., Oh, J.J., Yang, H.S.: An efficient representation of Euclidean gravity I. JHEP 12, 025 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Yang, H.S.: Riemannian manifolds and gauge theory, Proc. Sci., CORFU2011, 063 (2011)

  40. Park, J., Shin, J., Yang, H.S.: Anatomy of Einstein manifolds. Phys. Rev. D 105, 064015 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  41. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  42. Atiyah, M.F., Hitchin, N., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. A 362, 425 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Besse, A.L.: Einstein Manifolds. Springer-Verlag, Berlin (1987)

    Book  MATH  Google Scholar 

  44. Eguchi, T., Gilkey, P.B., Hanson, A.J.: Gravitation, gauge theories and differential geometry. Phys. Rep. 66, 213 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  45. Buchdahl, H.A.: On rotor calculus I. J. Aust. Math. Soc. 6, 402 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  46. Buchdahl, H.A.: On rotor calculus II. J. Aust. Math. Soc. 6, 424 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  47. Cahen, M., Debever, R., Defrise, L.: A Complex Vectorial Formalism in Gneral Relavity. J. Math. Mech. 16, 761 (1967)

    MathSciNet  MATH  Google Scholar 

  48. Portugal, R.: Algorithmic simplification of tensor expressions. J. Phys. A Math. Gen. 32, 7779 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Xu, D.: Two important invariant identities. Phys. Rev. D 35, 769 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  50. Harvey, A.: Identities of the scalars of the four-dimensional Riemannian manifold. J. Math. Phys. 36, 356 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Rajaraman, R.: Solitons and Instantons. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  52. ’t Hooft, G., Veltman, M.: One-loop divergencies in the theory of gravitation, Ann. Inst. H. Poincaré Phys. Theor. A 20, 69 (1974)

  53. Gibbons, G.W., Hawking, S.W.: Classification of gravitational instanton symmetries. Commun. Math. Phys. 66, 291 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  54. Edgar, S.B., Höglund, A.: Dimensionally dependent tensor identities by double antisymmetrization. J. Math. Phys. 43, 659 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Sneddon, G.E.: The identities of the algebraic invariants of the four-dimensional Riemann tensor. II. J. Math. Phys. 39, 1659 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Sneddon, G.E.: The identities of the algebraic invariants of the four-dimensional Riemann tensor. III. J. Math. Phys. 40, 5905 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Zakhary, E., Carminati, J.: On the problem of algebraic completeness for the invariants of the Riemann tensor: I. J. Math. Phys. 42, 1474 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Carminati, J., Zakhary, E., McLenaghan, R.G.: On the problem of algebraic completeness for the invariants of the Riemann tensor: II. J. Math. Phys. 43, 1474 (2002)

    MathSciNet  MATH  Google Scholar 

  59. Carminati, J., Zakhary, E.: On the problem of algebraic completeness for the invariants of the Riemann tensor: III. J. Math. Phys. 43, 4020 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Jack, I., Parker, L.: Linear independence of renormalization counterterms in curved space-times of arbitrary dimensionality. J. Math. Phys. 28, 1137 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Yang, H.S., Yun, S.: Calabi-Yau Manifolds, Hermitian Yang-Mills Instantons and Mirror Symmetry. Adv. High Energy Phys. 2017, 7962426 (2017). [arXiv:1107.2095]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was performed using Mathematica (www.wolfram.com) and the add-on package MathSymbolica (www.mathsymbolica.com). This work was supported by the National Research Foundation of Korea (NRF) with grant number NRF-2018R1D1A1B0705011314 (HSY). We acknowledge the hospitality at APCTP where part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Seok Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: ’t Hooft symbols

The explicit components of the ’t Hooft symbols \(\eta ^i_{ab}\) and \({{\overline{\eta }}}^i_{ab}\) for \(i = 1,2,3\) are given by

$$\begin{aligned} {\eta }^i_{ab}= & {} {\varepsilon }^{i4ab} + \delta ^{ia}\delta ^{4b} - \delta ^{ib}\delta ^{4a}, \nonumber \\ {{\overline{\eta }}}^{i}_{ab}= & {} {\varepsilon }^{i4ab} - \delta ^{ia}\delta ^{4b} + \delta ^{ib}\delta ^{4a} \end{aligned}$$
(A.1)

with \({\varepsilon }^{1234} = 1\). They satisfy the following relations

$$\begin{aligned} \eta ^{(\pm )i}_{ab}= & {} \pm \frac{1}{2} {\varepsilon _{ab}}^{cd} \eta ^{(\pm )i}_{cd}, \end{aligned}$$
(A.2)
$$\begin{aligned} \eta ^{(\pm )i}_{ab} \eta ^{(\pm )i}_{cd}= & {} \delta _{ac}\delta _{bd} -\delta _{ad}\delta _{bc} \pm \varepsilon _{abcd}, \end{aligned}$$
(A.3)
$$\begin{aligned} \varepsilon _{abcd} \eta ^{(\pm )i}_{de}= & {} {{\mp }} ( \delta _{ec} \eta ^{(\pm )i}_{ab} + \delta _{ea} \eta ^{(\pm )i}_{bc} - \delta _{eb} \eta ^{(\pm )i}_{ac} ), \end{aligned}$$
(A.4)
$$\begin{aligned} \eta ^{(\pm )i}_{ab} \eta ^{({{\mp }})j}_{ab}= & {} 0, \end{aligned}$$
(A.5)
$$\begin{aligned} \eta ^{(\pm )i}_{ac}\eta ^{(\pm )j}_{bc}= & {} \delta ^{ij}\delta _{ab} + \varepsilon ^{ijk}\eta ^{(\pm )k}_{ab}, \end{aligned}$$
(A.6)
$$\begin{aligned} \eta ^{(\pm )i}_{ac}\eta ^{({{\mp }})j}_{bc}= & {} \eta ^{(\pm )i}_{bc}\eta ^{({{\mp }})j}_{ac}, \end{aligned}$$
(A.7)
$$\begin{aligned} \varepsilon ^{ijk} \eta ^{(\pm )j}_{ab} \eta ^{(\pm )k}_{cd}= & {} \delta _{ac} \eta ^{(\pm )i}_{bd} - \delta _{ad} \eta ^{(\pm )i}_{bc} - \delta _{bc} \eta ^{(\pm )i}_{ad} + \delta _{bd} \eta ^{(\pm )i}_{ac}, \end{aligned}$$
(A.8)

where \(\eta ^{(+)i}_{ab} \equiv \eta ^i_{ab}\) and \(\eta ^{(-)i}_{ab} \equiv {\overline{\eta }}^i_{ab}\).

If we introduce two families of \(4 \times 4\) matrices defined by

$$\begin{aligned} {[}\tau ^i_+]_{ab} \equiv \frac{1}{2} \eta ^i_{ab}, \qquad [\tau ^i_-]_{ab} \equiv \frac{1}{2} {{\overline{\eta }}}^i_{ab}, \end{aligned}$$
(A.9)

the matrices in (A.9) provide two independent spin \(s=\frac{3}{2}\) representations of su(2) Lie algebra. Explicitly, they are given by

$$\begin{aligned} \tau ^{1}_+= & {} \frac{1}{2} \begin{pmatrix} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} -1 &{} 0 &{} 0 \\ -1 &{} 0 &{} 0 &{} 0 \\ \end{pmatrix}, \;\; \tau ^{2}_+ = \frac{1}{2} \begin{pmatrix} 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} -1 &{} 0 &{} 0 \\ \end{pmatrix}, \;\; \tau ^{3}_+ = \frac{1}{2} \begin{pmatrix} 0 &{} 1 &{} 0 &{} 0 \\ -1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} -1 &{} 0 \\ \end{pmatrix}, \\ \tau ^{1}_-= & {} \frac{1}{2} \begin{pmatrix} 0 &{} 0 &{} 0 &{} -1 \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} -1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 0 \\ \end{pmatrix}, \;\; \tau ^{2}_- = \frac{1}{2} \begin{pmatrix} 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 \\ 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ \end{pmatrix}, \;\; \tau ^{3}_- = \frac{1}{2} \begin{pmatrix} 0 &{} 1 &{} 0 &{} 0 \\ -1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 \\ 0 &{} 0 &{} 1 &{} 0 \\ \end{pmatrix} \end{aligned}$$

according to the definition (A.1). The relations in (A.6) and (A.7) immediately show that \(\tau ^i_\pm \) satisfy su(2) Lie algebras, i.e.,

$$\begin{aligned}{}[\tau ^i_\pm , \tau ^j_\pm ] = - \varepsilon ^{ijk} \tau ^k_\pm , \qquad [\tau ^i_\pm , \tau ^j_{{\mp }}] = 0. \end{aligned}$$
(A.10)

Appendix B: Don’t panic!

Here we will analytically prove the identities (4.1) and (4.2) using the decomposition (3.25). In order to simplify the calculation, it is convenient to choose pairs with the most contractions and perform the calculation with them. So we will show (4.1) by choosing the following pair:

$$\begin{aligned}{} & {} R_{a_1 a_2 b_1 b_2} R_{a_2 b_1 b_2 e_1} \big ( R_{c_1 c_2 d_1 d_2} R_{c_2 d_1 d_2 e_2} \big ) R_{e_1 a_1 e_2 c_1} \nonumber \\{} & {} \quad = R_{a_1 a_2 b_1 b_2} R_{a_2 b_1 b_2 e_1} \big ( f^{i_1 i_2}_{(++)} \eta ^{i_1}_{c_1 c_2} \eta ^{i_2}_{d_1 d_2} + f^{i_1 i_2}_{(--)} {\bar{\eta }}^{i_1}_{c_1 c_2} {\bar{\eta }}^{i_2}_{d_1 d_2} \big ) \nonumber \\{} & {} \qquad \big ( f^{j_1 j_2}_{(++)} \eta ^{j_1}_{c_2 d_1} \eta ^{j_2}_{d_2 e_2} + f^{j_1 j_2}_{(--)} {\bar{\eta }}^{j_1}_{c_2 d_1} {\bar{\eta }}^{j_2}_{d_2 e_2} \big ) R_{e_1 a_1 e_2 c_1} \nonumber \\{} & {} \quad = R_{a_1 a_2 b_1 b_2} R_{a_2 b_1 b_2 e_1} \left( \big ( \delta ^{i_1 j_1} \delta _{c_1 d_1} + \varepsilon ^{i_1 j_1 k_1} \eta ^{k_1}_{c_1 d_1} \big ) \big ( \delta ^{i_2 j_2} \delta _{d_1 e_2} + \varepsilon ^{i_2 j_2 k_2} {\bar{\eta }}^{k_2}_{d_1 e_2} \big ) f^{i_1 i_2}_{(++)} f^{j_1 j_2}_{(++)} \right. \nonumber \\{} & {} \qquad + \big ( \delta ^{i_1 j_1} \delta _{c_1 d_1} + \varepsilon ^{i_1 j_1 k_1} {\bar{\eta }}^{k_1}_{c_1 d_1} \big ) \big ( \delta ^{i_2 j_2} \delta _{d_1 e_2} + \varepsilon ^{i_2 j_2 k_2} {\bar{\eta }}^{k_2}_{d_1 e_2} \big ) f^{i_1 i_2}_{(--)} f^{j_1 j_2}_{(--)} \nonumber \\{} & {} \qquad \left. + [\eta ^{i_1} {\bar{\eta }}^{j_1} \eta ^{i_2} {\bar{\eta }}^{j_2}]_{c_1 e_2} f^{i_1 i_2}_{(++)} f^{j_1 j_2}_{(--)} + [{\bar{\eta }}^{i_1} \eta ^{j_1} {\bar{\eta }}^{i_2} \eta ^{j_2}]_{c_1 e_2} f^{i_1 i_2}_{(--)} f^{j_1 j_2}_{(++)} \right) R_{e_1 a_1 e_2 c_1}. \end{aligned}$$
(B.1)

Note that

$$\begin{aligned}{} & {} [\eta ^{i_1} {\bar{\eta }}^{j_1} \eta ^{i_2} {\bar{\eta }}^{j_2}]_{c_1 e_2} = [\eta ^{i_1} \eta ^{i_2} {\bar{\eta }}^{j_1} {\bar{\eta }}^{j_2}]_{c_1 e_2} = [(\delta ^{i_1 i_2} {\textbf{1}} + \varepsilon ^{i_1 i_2 i_3} \eta ^{i_3}) (\delta ^{j_1 j_2} {\textbf{1}} + \varepsilon ^{j_1 j_2 j_3} {\bar{\eta }}^{j_3} ) ]_{c_1 e_2} \\{} & {} \quad = [ \delta ^{i_1 i_2} \delta ^{j_1 j_2} {\textbf{1}} + \delta ^{j_1 j_2} \varepsilon ^{i_1 i_2 i_3} \eta ^{i_3} + \delta ^{i_1 i_2} \varepsilon ^{j_1 j_2 j_3} {\bar{\eta }}^{j_3} + \varepsilon ^{i_1 i_2 i_3} \varepsilon ^{j_1 j_2 j_3} \eta ^{i_3} {\bar{\eta }}^{j_3} ]_{c_1 e_2} \end{aligned}$$

and a similar formula holds for the matrix \([{\bar{\eta }}^{i_1} \eta ^{j_1} {\bar{\eta }}^{i_2} \eta ^{j_2}]_{c_1 e_2}\). Now it is easy to see that Eq. (B.1) identically vanishes when recalling Eq. (3.12) and the fact that \([\eta ^{i} {\bar{\eta }}^{j} ]_{c_1 e_2}\) is a symmetric matrix by Eq. (A.7). Although it is straightforward, the proof of Eq. (4.2) by hand requires a little algebra:

$$\begin{aligned}{} & {} 2 R_{a_1 a_2 b_1 b_2} R_{c_1 c_2 a_1 d_1} R_{d_2 b_1 d_1 a_2} R_{b_2 d_2 c_1 c_2} = \\{} & {} \quad - 2\cdot 4^3 \left( f^{i_1 i_2}_{(++)} f^{i_1 j_1}_{(++)} f^{k_1 k_2}_{(++)} f^{l_1 l_2}_{(++)} + f^{i_1 i_2}_{(--)} f^{i_1 j_1}_{(--)} f^{k_1 k_2}_{(--)} f^{l_1 l_2}_{(--)} \right) \varepsilon ^{j_1 l_1 k_1} \varepsilon ^{i_2 l_2 k_2}, \\{} & {} \quad - R_{a_1 a_2 b_1 b_2} R_{c_1 c_2 d_1 a_1} R_{d_2 a_2 c_2 c_1} R_{b_1 b_2 d_1 d_2} = \\{} & {} \quad - 4^3 \left( f^{i_1 i_2}_{(++)} f^{i_1 i_2}_{(++)} - f^{i_1 i_2}_{(--)} f^{i_1 i_2}_{(--)} \right) ^2 \\{} & {} \quad + 2\cdot 4^3 \left( f^{i_1 i_2}_{(++)} f^{i_1 j_2}_{(++)} f^{j_1 i_2}_{(++)} f^{j_1 j_2}_{(++)} + f^{i_1 i_2}_{(--)} f^{i_1 j_2}_{(--)} f^{j_1 i_2}_{(--)} f^{j_1 j_2}_{(--)} \right) . \end{aligned}$$

It is convenient to arrange the remaining two terms using the identity (2.7):

$$\begin{aligned}{} & {} 4 R_{a_1 a_2 b_1 b_2} R_{c_1 c_2 d_1 a_1} R_{d_2 a_2 b_1 c_1} \big ( R_{d_1 b_2 d_2 c_2} + R_{d_2 d_1 b_2 c_2} \big )\nonumber \\{} & {} \quad = 4 R_{a_1 a_2 b_1 b_2} R_{c_1 c_2 d_1 a_1} R_{d_2 a_2 b_1 c_1} R_{b_2 d_2 c_2 d_1} \nonumber \\{} & {} \quad = 4^3 \left( f^{i_1 i_2}_{(++)} f^{i_1 j_1}_{(++)} f^{k_1 k_2}_{(++)} f^{l_1 l_2}_{(++)} + f^{i_1 i_2}_{(--)} f^{i_1 j_1}_{(--)} f^{k_1 k_2}_{(--)} f^{l_1 l_2}_{(--)} \right) \varepsilon ^{j_1 l_1 k_1} \varepsilon ^{i_2 l_2 k_2} \nonumber \\{} & {} \qquad - 2\cdot 4^3 f^{i_1 i_2}_{(++)} f^{i_1 i_2}_{(++)} f^{j_1 j_2}_{(--)} f^{j_1 j_2}_{(--)} + 4^3 \left( f^{i_1 i_2}_{(++)} f^{i_1 i_2}_{(++)} + f^{j_1 j_2}_{(--)} f^{j_1 j_2}_{(--)} \right) \left( f^{k_1 k_2}_{(++)} \delta ^{k_1 k_2} \right) ^2 \nonumber \\{} & {} \qquad - 2\cdot 4^3 \left( f^{i_1 i_2}_{(++)} f^{j_1 i_2}_{(++)} f^{i_1 j_1}_{(++)} + f^{i_1 i_2}_{(--)} f^{j_1 i_2}_{(--)} f^{i_1 j_1}_{(--)} \right) f^{k_1 k_2}_{(++)} \delta ^{k_1 k_2}, \end{aligned}$$
(B.2)

where we have used the identity (3.13). Combining all these terms leads to the identity (4.2).

Appendix C: Cubic identities for a general Riemannian manifold

The identity (4.22) becomes trivial for an Einstein manifold which satisfies the equation \(R_{ab} = \frac{1}{4} R \delta _{ab}\) and the identity (4.23) reduces to

$$\begin{aligned} R_{acbd} R_{cedf} R_{eafb} = \frac{1}{16} R^3 - \frac{3}{8} R R_{abcd} R_{abcd} + \frac{1}{2} R_{abcd} R_{cdef} R_{efab}. \end{aligned}$$

Therefore, in order to prove that the identities (4.22) and (4.23) are the only linear relations existent in the cubic terms, we will consider a general Riemannian manifold and represent the eight cubic monomials using the decomposition (3.11):

$$\begin{aligned} R R_{ab} R_{ab}= & {} \frac{R^3}{4} + 16 R f^{ij}_{(+-)}f^{ij}_{(+-)}, \nonumber \\ R_{ab} R_{bc} R_{ca}= & {} \frac{R^3}{16} + 12 R f^{ij}_{(+-)}f^{ij}_{(+-)} \nonumber \\{} & {} - 32 \left( 2 f^{i_1 i_2}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_1}_{(+-)} - 3 f^{i_1 i_1}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_2}_{(+-)} + f^{i_1 i_1}_{(+-)} f^{i_2 i_2}_{(+-)} f^{i_3 i_3}_{(+-)} \right) , \nonumber \\ R_{ac} R_{bd} R_{abcd}= & {} \frac{R^3}{16} + 4 R f^{ij}_{(+-)}f^{ij}_{(+-)} \nonumber \\{} & {} + 32 \left( 2 f^{i_1 i_2}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_1}_{(+-)} - 3 f^{i_1 i_1}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_2}_{(+-)} + f^{i_1 i_1}_{(+-)} f^{i_2 i_2}_{(+-)} f^{i_3 i_3}_{(+-)} \right) \nonumber \\{} & {} + 32 \left( f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(+-)} f^{i_2 i_3}_{(+-)} + f^{i_1 i_2}_{(--)} f^{i_3 i_1}_{(+-)} f^{i_3 i_2}_{(+-)} \right) , \nonumber \\ R R_{abcd} R_{abcd}= & {} 16 R \Big (f^{ij}_{(++)} f^{ij}_{(++)} + 2 f^{ij}_{(+-)}f^{ij}_{(+-)} + f^{ij}_{(--)}f^{ij}_{(--)} \Big ), \nonumber \\ R_{ab} R_{acde} R_{bcde}= & {} 4 R \Big (f^{ij}_{(++)} f^{ij}_{(++)} + 2 f^{ij}_{(+-)}f^{ij}_{(+-)} + f^{ij}_{(--)}f^{ij}_{(--)} \Big ) \nonumber \\{} & {} + 64 \left( f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(+-)} f^{i_2 i_3}_{(+-)} + f^{i_1 i_2}_{(--)} f^{i_3 i_1}_{(+-)} f^{i_3 i_2}_{(+-)} \right) , \nonumber \\ R_{abcd}R_{cdef} R_{efab}= & {} 192 \left( f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(+-)} f^{i_2 i_3}_{(+-)} + f^{i_1 i_2}_{(--)} f^{i_3 i_1}_{(+-)} f^{i_3 i_2}_{(+-)} \right) \nonumber \\{} & {} + 64 \left( f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(++)} f^{i_2 i_3}_{(++)} + f^{i_1 i_2}_{(--)} f^{i_1 i_3}_{(--)} f^{i_2 i_3}_{(--)} \right) , \nonumber \\ R_{acbd} R_{cedf} R_{eafb}= & {} \frac{R^3}{16} - 6 R \Big (f^{ij}_{(++)} f^{ij}_{(++)} + f^{ij}_{(--)}f^{ij}_{(--)} \Big )\nonumber \\{} & {} + 32 \left( f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(++)} f^{i_2 i_3}_{(++)} + f^{i_1 i_2}_{(--)} f^{i_1 i_3}_{(--)} f^{i_2 i_3}_{(--)} \right) \nonumber \\{} & {} + 32 \left( 2 f^{i_1 i_2}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_1}_{(+-)} - 3 f^{i_1 i_1}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_2}_{(+-)} + f^{i_1 i_1}_{(+-)} f^{i_2 i_2}_{(+-)} f^{i_3 i_3}_{(+-)} \right) .\nonumber \\ \end{aligned}$$
(C.1)

One can see that the above 7 monomials are expressed in terms of only 5 types of terms besides the term \(R^3\), listed below. All the cubic monomials are symmetric under the interchange (3.23) since they are scalars. The six independent basis elements of the cubic Riemann monomials are given by

$$\begin{aligned}{} & {} R^3, \quad R \Big (f^{ij}_{(++)} f^{ij}_{(++)} + f^{ij}_{(--)}f^{ij}_{(--)} \Big ), \quad R f^{ij}_{(+-)}f^{ij}_{(+-)}, \nonumber \\{} & {} \left( f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(++)} f^{i_2 i_3}_{(++)} + f^{i_1 i_2}_{(--)} f^{i_1 i_3}_{(--)} f^{i_2 i_3}_{(--)} \right) , \quad \left( f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(+-)} f^{i_2 i_3}_{(+-)} + f^{i_1 i_2}_{(--)} f^{i_3 i_1}_{(+-)} f^{i_3 i_2}_{(+-)} \right) , \nonumber \\{} & {} \left( 2 f^{i_1 i_2}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_1}_{(+-)} - 3 f^{i_1 i_1}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_2}_{(+-)} + f^{i_1 i_1}_{(+-)} f^{i_2 i_2}_{(+-)} f^{i_3 i_3}_{(+-)} \right) = 6 \, \textrm{det}f^{ij}_{(+-)}, \end{aligned}$$
(C.2)

where \(\textrm{det}f^{ij}_{(+-)}\) is the determinant of the \(3 \times 3\) matrix \(f^{ij}_{(+-)}\).Footnote 9 The first three basis elements in (C.2) correspond to the quadratic ones (4.3) multiplied by R. The last basis in (C.2) consists of three terms which are self-symmetric under the parity transformation (3.23). Thus they could form independent basis separately, but they must appear with that combination because they come from the product of Ricci tensors, \(R_{ab} R_{bc} R_{ca}\). It is also clear from the fact that such combination forms \(\textrm{det}f^{ij}_{(+-)}\). This proves that the cubic scalars have only six independent basis elements. Replacing the 5 types of terms by the cubic monomials leads to the identities (4.22) and (4.23). There is no more linear relation. Our approach identifies the independent basis of Riemann monomials without any ambiguity.

Now we list the result for the expansion of second-rank cubic monomials in Table 1. For notational simplicity, we will use the matrix notation in (4.26):

$$\begin{aligned} A: R^2 R_{ab}= & {} \frac{R^3}{4} \delta _{ab} - 2 R^2 B_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ B: R R_{ac} R_{bc}= & {} \Big ( \frac{R^3}{16} + 4 R \, \text {Tr} B B^T \Big ) \delta _{ab} \\{} & {} - 2R \left( \text {Tr} \big ( B^2 + (B^T)^2 \big ) - 2 \big ( \text {Tr} B \big )^2 \right) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} - \Big ( R^2 B - 8 R \big ( (B^T)^2 - \text {Tr} B B^T \big ) \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ C: R_{ab} R_{cd}^2= & {} \left( \frac{R^3}{16} + 4 R \, \text {Tr} \big ( B B^T \big ) \right) \delta _{ab} \\{} & {} - \left( \frac{R^2}{2} B + 32 \text {Tr} \big ( B B^T \big ) B \right) _{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ D: R_{ac} R_{bd} R_{cd}= & {} \left( \frac{R^3}{64} + 3 R \, \text {Tr} \big ( B B^T \big ) -48 \, \textrm{det}B \right) \delta _{ab} \\{} & {} - \frac{3}{2} R \left( \text {Tr} \big ( B^2 + (B^T)^2 \big ) - 2 \big ( \text {Tr} B \big )^2 \right) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} - \Big ( \frac{3}{8} R^2 B - 6 R \big ( (B^T)^2 - \text {Tr} B \, B^T \big )\\{} & {} - 16 B B^T B + 24 \text {Tr} \big ( B B^T \big ) B \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ E: R R_{cd} R_{acbd}= & {} \left( \frac{R^3}{16} + 4 R \, \text {Tr} \big ( B B^T \big ) \right) \delta _{ab}\\{} & {} + 2 R \left( \text {Tr} \big ( B^2 + (B^T)^2 \big ) - 2 \big ( \text {Tr} B \big )^2 \right) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} - 4 R \Big ( (A_+ B + B A_-) + 2 (B^T)^2 - 2 (\text {Tr} B) B^T \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ F: R_{ce} R_{de} R_{acbd}= & {} \left( \frac{R^3}{64} + 3 R \, \text {Tr} \big ( B B^T \big ) -48 \, \textrm{det}B \right) \delta _{ab} \\{} & {} + R \left( \text {Tr} \big ( B^2 + (B^T)^2 \big ) - 2 \big ( \text {Tr} B \big )^2 \right) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} + 4 \text {Tr} \Big ( \big ( B^2 + (B^T)^2 - 2 \text {Tr} B \, B \big ) (A_+ + A_-) \Big ) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} + \left( \frac{R^2}{8} B - 2 R \big ( A_+ B + B A_- + 2 (B^T)^2 - 2 \text {Tr} B \, B^T \big ) \right) _{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab} \\{} & {} + \Big ( 8 \text {Tr} B \, (B^T A_+ + A_- B^T) \\{} & {} - 8 \text {Tr} B \, (A_+ B^T + B^T A_-) + 8 \text {Tr} (B A_+ + B^T A_-) B^T \\{} & {} - 8 (B^T A_+ B^T + B^T A_- B^T) + 8 \big ( A_+ (B^T)^2 + (B^T)^2 A_- \\{} & {} - (B^T)^2 A_+ - A_- (B^T)^2 \big ) + 8 \text {Tr} \big ( B B^T \big ) \, B \\{} & {} + 4 \big ( \text {Tr} B \big )^2 (A_+ + A_-) \\{} & {} - 2 \text {Tr} \big ( B^2 + (B^T)^2 \big ) (A_+ + A_-) -16 B B^T B \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \end{aligned}$$
$$\begin{aligned} G: R_{ac} R_{de} R_{becd}= & {} \left( \frac{R^3}{64} + R \text {Tr} \big ( B B^T \big ) + 48 \, \textrm{det}B + 8 \text {Tr} \big ( B^T A_+ B + B A_- B^T \big ) \right) \delta _{ab} \\{} & {} - \Big ( \frac{R^2}{8} B + R \, \big ( A_+ B + B A_- \big ) + 4 \big ( \text {Tr} B \big )^2 (A_+ + A_-) \\{} & {} - 2 \text {Tr} \big ( B^2 + (B^T)^2 \big ) (A_+ + A_-) \\{} & {} - 8 \text {Tr} B \big ( A_+ B^T + B^T A_- \big ) + 8 \big ( A_+ (B^T)^2 + (B^T)^2 A_- \big )\\{} & {} - 8 \text {Tr} \big ( B B^T \big ) B + 16 BB^T B \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab} \\{} & {} + 8 \varepsilon ^{i_1 i_2 i_3} \left( \big ( B B^T A_+ \big )_{i_1 i_2} \eta ^{i_3}_{ab} + \big ( B^T B A_- \big )_{i_1 i_2} {\bar{\eta }}^{i_3}_{ab} \right) , \\ H: R R_{aecd} R_{becd}= & {} 4 R \text {Tr} \big ( A_+^2 + A_-^2 + 2 B B^T \big ) \delta _{ab}\\{} & {} - 8 R \big ( A_+ B + B A_- \big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ I: R_{ab} R_{cdef}^2= & {} 4 R \text {Tr} \big ( A_+^2 + A_-^2 + 2 B B^T \big ) \delta _{ab}\\{} & {} - 32 \text {Tr} \big ( A_+^2 + A_-^2 + 2 B B^T \big ) B_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ J: R_{ac} R_{bedf} R_{cedf}= & {} \left( R \text {Tr} \big ( A_+^2 + A_-^2 + 2 B B^T \big ) + 16 \text {Tr} \big ( B^T A_+ B + B A_- B^T \big ) \right) \delta _{ab} \\{} & {} - 8 \text {Tr} \left( \big ( B^2 + (B^T)^2 - 2 \text {Tr} B \, B \big ) (A_+ + A_-) \right) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} - 2 R \big ( A_+ B + B A_- \big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\{} & {} - 8 \Big ( \text {Tr} \big ( A_+^2 + A_-^2 \big ) B + 2 \text {Tr} B \big ( B^T A_+ + A_- B^T \big )\\{} & {} - 2 \big ( (B^T)^2 A_+ + A_- (B^T)^2 \big ) + 2 \text {Tr} \big ( B A_+ + B^T A_- \big ) B^T \\{} & {} - 2 \big ( B^T A_+ B^T + B^T A_- B^T \big ) + 2 \text {Tr} \big ( B B^T \big ) B \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab} \\{} & {} + 16 \varepsilon ^{i_1 i_2 i_3} \left( \big ( B B^T A_+ \big )_{i_1 i_2} \eta ^{i_3}_{ab} + \big ( B^T B A_- \big )_{i_1 i_2} {\bar{\eta }}^{i_3}_{ab} \right) , \\ K: R_{ef} R_{aecd} R_{bfcd}= & {} \left( R \text {Tr} \big ( A_+^2 + A_-^2 + 2 B B^T \big ) + 16 \text {Tr} \big ( B^T A_+ B + B A_- B^T \big ) \right) \delta _{ab} \\{} & {} + 8 \text {Tr} \Big ( \big ( B^2 + (B^T)^2 - 2 \text {Tr} B \, B \big ) (A_+ + A_-) \Big ) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} - 2 R \big ( A_+ B + B A_- \big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab} \\{} & {} + 8 \Big ( \text {Tr} \big ( A_+^2 + A_-^2 \big ) B + 2 \text {Tr} B \big ( B^T A_+ + A_- B^T \big )\\{} & {} - 2 \big ( (B^T)^2 A_+ + A_- (B^T)^2 \big ) + 2 \text {Tr} \big ( B A_+ + B^T A_- \big ) B^T \\{} & {} - 2 \big ( A_+^2 B + B A_-^2 \big ) - 2 \big ( B^T A_+ B^T + B^T A_- B^T \big ) \\{} & {} + 2 \text {Tr} \big ( B B^T \big ) B - 4 B B^T B \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ L: R_{ef} R_{acbd} R_{cedf}= & {} \left( \frac{R^3}{64} + R \text {Tr} \big ( B B^T \big ) + 48 \, \textrm{det}B + 8 \text {Tr} \big ( B^T A_+ B + B A_- B^T \big ) \right) \delta _{ab} \\{} & {} + \frac{R}{2} \left( \text {Tr} \big ( B^2 + (B^T)^2 \big ) - 2 \big (\text {Tr} B \big )^2 \right) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} - 4 \text {Tr} \Big ( \big ( B^2 + (B^T)^2 - 2 \text {Tr} B \, B \big ) (A_+ + A_-) \Big ) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} - \left( \frac{R^2}{8} B - R \big ( A_+ B + B A_- \big ) \right. \\{} & {} \left. - R \big ( B^2 + (B^T)^2 - 2 (\text {Tr} B) \, B^T \big ) \right) _{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab} \\{} & {} - 8 \Big ( \text {Tr} B \big ( B^T A_+ + A_- B^T \big )\\{} & {} - \big ( (B^T)^2 A_+ + A_- (B^T)^2 \big ) + \text {Tr} \big ( B A_+ + B^T A_- \big ) B^T + \big ( A_+^2 B + B A_-^2 \big ) \\{} & {} - \big ( B^T A_+ B^T + B^T A_- B^T \big ) \\{} & {} + 3 \text {Tr} \big ( B B^T \big ) B - 2 B B^T B + 2 A_+ B A_- \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \end{aligned}$$
$$\begin{aligned} M: R_{ef} R_{acde} R_{bcde}= & {} \left( R \text {Tr} \big ( A_+^2 + A_-^2 + 2 B B^T \big ) + 16 \text {Tr} \big ( B^T A_+ B + B A_- B^T \big ) \right) \delta _{ab} \\{} & {} - 2 \Big ( R \big ( A_+ B + B A_- \big ) + 8 \big ( B B^T B + A_+ B A_- \big ) \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ N: R_{agcd} R_{bgef} R_{cdef}= & {} 16 \left( \text {Tr} \big ( A_+^3 + A_-^3 \big ) + 3 \text {Tr} \big ( B^T A_+ B + B A_- B^T \big ) \right) \delta _{ab} \\{} & {} -32 \Big ( A_+^2 B + B A_-^2 + B B^T B + A_+ B A_- \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ O: R_{aecg} R_{bfdg} R_{cdef}= & {} \left( \frac{R^3}{64} - \frac{3}{2} R \text {Tr} \big ( A_+^2 + A_-^2 \big ) + 48 \, \textrm{det}B + 8 \text {Tr} \big ( A^3_+ + A^3_-\big ) \right) \delta _{ab} \\{} & {} - \left( \frac{R^2}{8} B - R \big ( A_+ B + B A_- \big ) - 4 \text {Tr} \big ( A_+^2 + A_-^2 \big ) B\right. \\{} & {} \left. + 4 \big ( \text {Tr} B \big )^2 (A_+ + A_-) \right) _{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab} \\{} & {} + 4 \Big ( \frac{1}{2} \text {Tr} \big ( B^2 + (B^T)^2 \big ) (A_+ + A_-) + 2 \text {Tr} B \big ( A_+ B^T + B^T A_- \big ) \\{} & {} - 2 \big ( A_+^2 B + B A_-^2 + A_+ (B^T)^2 + (B^T)^2 A_- \big ) \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\ P: R_{aebg} R_{cdef} R_{cdfg}= & {} - \left( R \text {Tr} \big ( A_+^2 + A_-^2 + 2 B B^T \big ) + 16 \text {Tr} \big ( B^T A_+ B + B A_- B^T \big ) \right) \delta _{ab} \\{} & {} - 8 \text {Tr} \Big ( \big ( B^2 + (B^T)^2 - 2 \text {Tr} B \, B \big ) (A_+ + A_-) \Big ) \big ( \eta ^{i_1} {\bar{\eta }}^{i_1} \big )_{ab} \\{} & {} - 2 R \left( A_+ B + B A_- \right) _{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}, \\{} & {} + 8 \Big ( \text {Tr} \big ( A_+^2 + A_-^2 \big ) B - 2 \text {Tr} B \big ( B^T A_+ + A_- B^T \big ) \\{} & {} - 2 \text {Tr} \big ( B A_+ + B^T A_- \big ) B^T + 2 \text {Tr} \big ( B B^T \big ) B \\{} & {} + 2 \big ( A_+^2 B + B A_-^2 + (B^T)^2 A_+ + A_- (B^T)^2 + B^T A_+ B^T \\{} & {} + B^T A_- B^T + 2 A_+ B A_- \big ) \Big )_{i_1 i_2} \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab}. \end{aligned}$$

Note that the second-rank cubic tensors in Table 1 are parity even, so they must be invariant under the parity transformation (4.27). One can quickly check it by noting that the parity transformation acts on \(P: \big ( \eta ^{i_1} {\bar{\eta }}^{i_2} \big )_{ab} \rightarrow \big ( {\bar{\eta }}^{i_1} \eta ^{i_2} \big )_{ab} = \big ( \eta ^{i_2} {\bar{\eta }}^{i_1} \big )_{ab}\). The second-rank cubic monomials in Table 1 are symmetric with respect to \((a \leftrightarrow b)\) except in G and J which contain an anti-symmetric part as was shown above. Although the expansion is much more complicated compared to the scalar case, it turns out that terms that would appear in the scalar case reappear with the factor \(\frac{1}{4} \delta _{ab}\), and novel terms that do not appear in the scalar case (or should disappear in the scalar case) appear with the factor \((\eta ^i {\bar{\eta }}^j)_{ab}\). Indeed, \(\delta _{ab}\) and \((\eta ^i {\bar{\eta }}^j)_{ab}\) are the only symmetric tensors constructed from the product of ’t Hooft symbols. The latter is trace-free due to Eq. (A.5). In particular, \((\eta ^i {\bar{\eta }}^i)_{ab}\) is a diagonal matrix given by

$$\begin{aligned} (\eta ^i {\bar{\eta }}^i)_{ab} = - \eta ^i_{ac} {\bar{\eta }}^i_{bc} = - \big (\delta _{ab} - 4 \delta _{a4} \delta _{b4} \big ) = - \left( \begin{array}{cccc} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} -3 \\ \end{array} \right) . \end{aligned}$$
(C.3)

We found that there are two algebraic relations for the second-rank cubic tensors in Table 1. We list them below:

$$\begin{aligned}{} & {} R^2 R_{ab} - 4 R_{ab} R_{cd}^2 - 8 R_{ac} R_{de} R_{becd} -2 R R_{acde} R_{becd} + R_{ab} R_{cdef}^2 + 4 R_{ef} R_{aecd} R_{bfcd} \nonumber \\{} & {} \quad + 8 R_{ef} R_{aecd} R_{bcdf} + 4 R_{ac} R_{bedf} R_{cedf} \nonumber \\{} & {} \quad + 8 R_{aecg} R_{bfdg} R_{cdef} - 4 R_{agcd} R_{bgef} R_{cdef} = 0, \end{aligned}$$
(C.4)
$$\begin{aligned}{} & {} R R_{ac} R_{bc} - 2 R_{ac} R_{bd} R_{cd} + R R_{cd} R_{acbd} - 2 R_{ce} R_{de} R_{acbd}\nonumber \\{} & {} \quad - 6 R_{ac} R_{de} R_{becd} - R R_{aecd} R_{becd} \nonumber \\{} & {} \quad + 4 R_{ef} R_{acde} R_{bcdf} + 2 R_{ef} R_{aecd} R_{bfcd} - 2 R_{ef} R_{acbd} R_{cedf} + 3 R_{ac} R_{bedf} R_{cedf} \nonumber \\{} & {} \quad + 4 R_{aecg} R_{bfdg} R_{cdef} -2 R_{agcd} R_{bgef} R_{cdef} - R_{aebg} R_{cdef} R_{cdfg} = 0. \end{aligned}$$
(C.5)

It is natural to expect that there exist more than two linear relations between the second-rank cubic tensors in Table 1 since contracting the free indices a and b has to reproduce the eight cubic scalars which obey the syzygy relations (4.22) and (4.23). However we found that there exist 14 linearly independent second-rank cubic tensors using a computer algorithm.Footnote 10 This means that Eqs. (C.4) and (C.5) exhaust all possible linear relations for the second-rank cubic tensors in Table 1. It also implies that Eqs. (C.4) and (C.5) have to reproduce the syzygies (4.22) and (4.23) when contracting a and b. It can be checked by eliminating \(R_{a e c g} R_{b f d g} R_{c d e f}\) and \(R_{a c} R_{b e d f} R_{c e d f}\) from Eqs. (C.4) and (C.5), respectively, and then combining them together to obtain

$$\begin{aligned}{} & {} R^2 R_{a b} - 2 R R_{a c} R_{b c} + 4 R_{a c} R_{b d} R_{c d} - 4 R_{a b} R_{c d}^2 - 2 R R_{c d} R_{a c b d} + 4 R_{c e} R_{d e} R_{a c b d} \nonumber \\{} & {} \quad + 4 R_{a c} R_{d e} R_{b e c d} + R_{a b} R_{c d e f}^2 + 4 R_{e f} R_{a c b d} R_{c e d f} \nonumber \\{} & {} \quad - 2 R_{a c} R_{b e d f} R_{c e d f} + 2 R_{a e b g} R_{c d e f} R_{c d f g} = 0, \end{aligned}$$
(C.6)
$$\begin{aligned}{} & {} 3 R^2 R_{a b} - 4 R R_{a c} R_{b c} + 8 R_{a c} R_{b d} R_{c d} - 12 R_{a b} R_{c d}^2 - 4 R R_{c d} R_{a c b d} + 8 R_{c e} R_{d e} R_{a c b d} \nonumber \\{} & {} \quad - 2 R R_{a e c d} R_{b e c d} + 8 R_{e f} R_{a c d e} R_{b c d f}\nonumber \\{} & {} \quad + 4 R_{e f} R_{a e c d} R_{b f c d} + 3 R_{a b} R_{c d e f}^2 + 8 R_{e f} R_{a c b d} R_{c e d f} \nonumber \\{} & {} \quad - 4 R_{a g c d} R_{b g e f} R_{c d e f} + 8 R_{a e c g} R_{b f d g} R_{c d e f} + 4 R_{a e b g} R_{c d e f} R_{c d f g} = 0. \end{aligned}$$
(C.7)

Combining the above equations after contracting a and b reproduces the cubic identities (4.22) and (4.23).

Appendix D: Quartic identities for a general Riemannian manifold

We present the expansion of the 26 quartic monomials in Table 2 using the decomposition (3.11) for a general Riemannian manifold:

$$\begin{aligned}{} & {} A: R^4=256 \left( f_{(++)}^{i_1 i_1} + f_{(--)}^{i_1 i_1} \right) ^4, \nonumber \\{} & {} B: R^2 R_{a b} R_{a b}=\frac{R^4}{4} + 16 R^2 \left( f_{(+-)}^{i_1 i_2}\right) ^2, \\{} & {} C: R R_{a b} R_{b c} R_{c a} = \frac{R^4}{16} + 12 R^2 \left( f_{(+-)}^{i_1 i_2}\right) ^2\\{} & {} \qquad - 32 R \left( 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_1} - 3 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_2} + f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_3} \right) , \\{} & {} D: \left( R_{a b} R_{a b} \right) ^2 = \frac{R^4}{16} + 8 R^2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + 256 \left( f_{(+-)}^{i_1 i_2} \right) ^2 \left( f_{(+-)}^{i_3 i_4} \right) ^2, \\{} & {} E: R_{a b} R_{b c} R_{c d} R_{d a} \\{} & {} \quad \; = \frac{R^4}{64} + 6 R^2 \left( f_{(+-)}^{i_1 i_2}\right) ^2\\{} & {} \qquad - 32 R\left( 2f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_3}f_{(+-)}^{i_3 i_1} - 3f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_2} + f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_3}\right) \\{} & {} \qquad + 192 \left( f_{(+-)}^{i_1 i_2}\right) ^2 \left( f_{(+-)}^{i_3 i_4} \right) ^2 - 128 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_2} f_{(+-)}^{i_4 i_3}, \\{} & {} F: R R_{a b} R_{c d} R_{a c b d} \\{} & {} \quad \; = \frac{R^4}{16} + 4R^2 \left( f_{(+-)}^{i_1 i_2}\right) ^2 \\{} & {} \qquad + 32 R \left( \left( 2f_{(+-)}^{i_1 i_2}f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_1} - 3 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_2} + f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_3} \right) \right. \\{} & {} \qquad \left. + \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_3} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_3} \right) \right) , \\{} & {} G: R_{a b} R_{c e} R_{e d} R_{a c b d} \\{} & {} \quad \; = \frac{R^4}{64} + 2 R^2 \left( f_{(+-)}^{i_1 i_2} \right) ^2\\{} & {} \qquad + 8 R \left( \left( 2 f_{(+-)}^{i_1 i_2}f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_1} - 3 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_2} + f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_3} \right) \right. \\{} & {} \qquad \left. + 2 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_3} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_3} \right) \right) \\{} & {} \qquad -64 \left( f_{(+-)}^{i_1 i_2} \right) ^2 \left( f_{(+-)}^{i_3 i_4}\right) ^2 + 128 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_2} f_{(+-)}^{i_4 i_3} \\{} & {} \qquad - 32 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_2} f_{(++)}^{i_3 i_4} -2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_1} f_{(++)}^{i_3 i_4} \right) \\{} & {} \qquad - 32 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_2 i_4} f_{(--)}^{i_3 i_4} - 2 f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) , \nonumber \\{} & {} H: R^2 R_{a b c d} R_{a b c d} = 16 R^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) , \end{aligned}$$
$$\begin{aligned}{} & {} I: R R_{a b} R_{a c d e} R_{b c d e} \\{} & {} \quad \; = 4 R^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad + 64R \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_3} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_3} \right) , \\{} & {} J: R_{a b} R_{a b} R_{c d e f} R_{c d e f} \\{} & {} \quad \; = 4 R^2 \left( \left( f_{(++)}^{i_1 i_2}\right) ^2 + 2\left( f_{(+-)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad + 256 \left( f_{(+-)}^{i_3 i_4} \right) ^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) , \\{} & {} K: R_{a b} R_{b c} R_{d e f a} R_{d e f c} \\{} & {} \quad \; = R^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad + 32 R \left( f_{(+-)}^{i_1 i_2}f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_3} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_3} \right) \\{} & {} \qquad \; + 64 \left( f_{(+-)}^{i_3 i_4} \right) ^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2}\right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad \; + 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_2} f_{(++)}^{i_3 i_4} - 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_1} f_{(++)}^{i_3 i_4} \right) \\{} & {} \qquad \; + 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_2 i_4} f_{(--)}^{i_3 i_4} -2 f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) , \\{} & {} L: R_{a b} R_{cd} R_{a c e f} R_{b d e f} \\{} & {} \quad \; = R^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad + 32 R \left( f_{(+-)}^{i_1 i_2}f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_3} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_3} \right) \\{} & {} \qquad \, - 64 \left( f_{(+-)}^{i_3 i_4} \right) ^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2}\right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad \; - 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_2} f_{(++)}^{i_3 i_4} - 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_1} f_{(++)}^{i_3 i_4} \right) \\{} & {} \qquad \; - 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_2 i_4} f_{(--)}^{i_3 i_4} -2 f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) \\{} & {} \qquad \; + 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_4} f_{(++)}^{i_3 i_4} + 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_2} f_{(+-)}^{i_4 i_3} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) , \end{aligned}$$
$$\begin{aligned}{} & {} M: R_{ab} R_{cd} R_{a e b f} R_{c e d f} \\{} & {} \quad \; = \frac{R^4}{64} + 2 R^2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 \\{} & {} \qquad + 12 R \left( 2 f_{(+-)}^{i_1 i_2}f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_1} - 3 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_2} + f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_3} \right) \\{} & {} \qquad \, + 192 \left( f_{(+-)}^{i_1 i_2} \right) ^2 \left( f_{(+-)}^{i_3 i_4} \right) ^2 + 16 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_2} f_{(++)}^{i_3 i_4} - 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_1} f_{(++)}^{i_3 i_4} \right) \\{} & {} \qquad \; + 16 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_2 i_4} f_{(--)}^{i_3 i_4} -2 f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) \\{} & {} \qquad \; + 64 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_4} f_{(++)}^{i_3 i_4} + 2 f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_2 i_4} f_{(++)}^{i_1 i_2} f_{(--)}^{i_3 i_4} \right. \\{} & {} \qquad \left. - 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_2} f_{(+-)}^{i_4 i_3} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) , \\{} & {} N: R_{a b} R_{c d} R_{a e c f} R_{b e d f} \\{} & {} \quad \; = R^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad + 32 R \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_3} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_3} \right) \\{} & {} \qquad \; + 128 \left( f_{(++)}^{i_1 i_2} f_{(--)}^{i_3 i_4} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_2 i_4} + f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_2} f_{(+-)}^{i_4 i_3} \right) , \\{} & {} O: R R_{a b c d} R_{c d e f} R_{e f a b} \\{} & {} \quad \; = 64 R \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_1 i_3} f_{(++)}^{i_2 i_3} + 3 f_{(++)}^{i_1 i_3} f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} + 3 f_{(--)}^{i_1 i_3} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_1 i_3} f_{(--)}^{i_2 i_3} \right) , \end{aligned}$$
$$\begin{aligned}{} & {} P: R R_{a c b d} R_{a e b f} R_{c e d f} = \frac{R^4}{16} - 6 R^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad \, + 32 R \left( \left( 2 f_{(+-)}^{i_1 i_2}f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_1} - 3 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_2} + f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_3} \right) \right. \\{} & {} \qquad \, + \left. \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_1 i_3} f_{(++)}^{i_2 i_3} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_1 i_3} f_{(--)}^{i_2 i_3} \right) \right) , \\{} & {} Q: R_{a b} R_{a c b d} R_{e f g c} R_{e f g d} \\{} & {} \quad \; = R^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad + 64 \left( f_{(+-)}^{i_3 i_4} \right) ^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2}\right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad \; - 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_2} f_{(++)}^{i_3 i_4} - 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_1} f_{(++)}^{i_3 i_4} \right) \\{} & {} \qquad \; - 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_2 i_4} f_{(--)}^{i_3 i_4} -2 f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) \\{} & {} \qquad \; + 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_4} f_{(++)}^{i_3 i_4} + 2 f_{(++)}^{i_1 i_2} f_{(--)}^{i_3 i_4} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_2 i_4} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) , \\{} & {} R: R_{ab} R_{c d e f} R_{a g e f} R_{b g c d} \\{} & {} \quad \; = 16 R \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_1 i_3} f_{(++)}^{i_2 i_3} + 3 f_{(++)}^{i_1 i_3} f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} + 3 f_{(--)}^{i_1 i_3} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_1 i_3} f_{(--)}^{i_2 i_3} \right) \\{} & {} \qquad \; + 256 \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_2 i_3} f_{(+-)}^{i_3 i_4} f_{(+-)}^{i_1 i_4} + f_{(++)}^{i_1 i_2} f_{(--)}^{i_3 i_4} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_2 i_4} \right. \\{} & {} \qquad \left. + f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_2} f_{(+-)}^{i_4 i_3} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_2 i_3} f_{(+-)}^{i_4 i_3} f_{(+-)}^{i_4 i_1} \right) , \\ \end{aligned}$$
$$\begin{aligned}{} & {} S: R_{a b} R_{c e d f} R_{e g f a} R_{g c b d} = \frac{R^4}{64} - \frac{R^2}{2} \left( 3 \left( f_{(++)}^{i_1 i_2} \right) ^2 - 2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + 3 \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad \; + 8 R \left( \left( 2 f_{(+-)}^{i_1 i_2}f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_1} - 3 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_3 i_2} + f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_3} \right) \right. \\{} & {} \qquad \left. + \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_1 i_3} f_{(++)}^{i_2 i_3} - f_{(++)}^{i_1 i_3} f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} - f_{(--)}^{i_1 i_3} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_1 i_3} f_{(--)}^{i_2 i_3} \right) \right) \\{} & {} \qquad \; - 32 \left( f_{(+-)}^{i_3 i_4} \right) ^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad + 64 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} f_{(++)}^{i_1 i_4} f_{(++)}^{i_3 i_4} + f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} f_{(--)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) \\{} & {} \qquad \; - 32 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_2} f_{(++)}^{i_3 i_4} - 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_1} f_{(++)}^{i_3 i_4} \right) \\{} & {} \qquad \; - 32 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_2 i_4} f_{(--)}^{i_3 i_4} -2 f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) , \\{} & {} T: \big ( R_{a b c d} R_{a b c d} \big )^2 = 256 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2} \right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) ^2, \\{} & {} U: R_{a b c d} R_{a b c e} R_{f g h d} R_{f g h e} = 256 \left( f_{(+-)}^{i_3 i_4} \right) ^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + \left( f_{(+-)}^{i_1 i_2}\right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad \; + 64 \left( \big ( f^{i_1 i_2}_{(++)} \big )^2 \big ( f^{i_3 i_4}_{(++)} \big )^2 + 2 \big ( f^{i_1 i_2}_{(++)} \big )^2 \big ( f^{i_3 i_4}_{(--)} \big )^2 + \big ( f^{i_1 i_2}_{(--)} \big )^2 \big ( f^{i_3 i_4}_{(--)} \big )^2 \right) \\{} & {} \qquad \; + 256 \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_2 i_3} f_{(+-)}^{i_3 i_4} f_{(+-)}^{i_1 i_4} + 2 f_{(++)}^{i_1 i_2} f_{(--)}^{i_3 i_4} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_2 i_4} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_2 i_3} f_{(+-)}^{i_4 i_3} f_{(+-)}^{i_4 i_1} \right) , \end{aligned}$$
$$\begin{aligned}{} & {} V: R_{a b c d} R_{c d e f} R_{e f g h} R_{g h a b} \\{} & {} \quad \; = 256 \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_1 i_3} f_{(++)}^{i_2 i_4} f_{(++)}^{i_3 i_4} + 4 f_{(++)}^{i_1 i_2} f_{(++)}^{i_2 i_4} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_3} + 4 f_{(++)}^{i_1 i_2} f_{(--)}^{i_3 i_4} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_2 i_4} \right. \\{} & {} \qquad \; \left. + 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_2} f_{(+-)}^{i_4 i_3} + 4 f_{(--)}^{i_1 i_2} f_{(--)}^{i_2 i_4} f_{(+-)}^{i_3 i_1} f_{(+-)}^{i_3 i_4} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_1 i_3} f_{(--)}^{i_2 i_4} f_{(--)}^{i_3 i_4} \right) , \\{} & {} W: R_{a b c d} R_{a b e f} R_{c e g h} R_{d f g h} \\{} & {} \quad \; = - 64 \left( \big ( f^{i_1 i_2}_{(++)} \big )^2 \big ( f^{i_3 i_4}_{(++)} \big )^2 - 2 \big ( f^{i_1 i_2}_{(++)} \big )^2 \big ( f^{i_3 i_4}_{(--)} \big )^2 + \big ( f^{i_1 i_2}_{(--)} \big )^2 \big ( f^{i_3 i_4}_{(--)} \big )^2 \right) \\{} & {} \qquad + 128 \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_1 i_3} f_{(++)}^{i_2 i_4} f_{(++)}^{i_3 i_4} + 4 f_{(++)}^{i_1 i_2} f_{(++)}^{i_2 i_4} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_3} + 4 f_{(++)}^{i_1 i_2} f_{(--)}^{i_3 i_4} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_2 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_2} f_{(+-)}^{i_4 i_3} + 4 f_{(--)}^{i_1 i_2} f_{(--)}^{i_2 i_4} f_{(+-)}^{i_3 i_1} f_{(+-)}^{i_3 i_4} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_1 i_3} f_{(--)}^{i_2 i_4} f_{(--)}^{i_3 i_4} \right) , \\ \\{} & {} X: R_{a b c d} R_{ef a b} R_{g c h e} R_{g d h f} = R^2 \left( \left( f_{(++)}^{i_1 i_2} \right) ^2 + 2 \left( f_{(+-)}^{i_1 i_2}\right) ^2 + \left( f_{(--)}^{i_1 i_2} \right) ^2 \right) \\{} & {} \qquad \; - 16 R \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_1 i_3} f_{(++)}^{i_2 i_3} + f_{(++)}^{i_1 i_3} f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_3 i_2} + f_{(--)}^{i_1 i_3} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_2 i_3} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_1 i_3} f_{(--)}^{i_2 i_3} \right) \\{} & {} \qquad \; - 64 \left( \big ( f^{i_1 i_2}_{(++)} \big )^2 \big ( f^{i_3 i_4}_{(++)} \big )^2 + \big ( f^{i_1 i_2}_{(++)} \big )^2 \big ( f^{i_3 i_4}_{(+-)} \big )^2 + \big ( f^{i_1 i_2}_{(--)} \big )^2 \big ( f^{i_3 i_4}_{(+-)} \big )^2 + \big ( f^{i_1 i_2}_{(--)} \big )^2 \big ( f^{i_3 i_4}_{(--)} \big )^2 \right) \\{} & {} \qquad \; - 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(++)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_2} f_{(++)}^{i_3 i_4} - 2 f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_3} f_{(+-)}^{i_4 i_1} f_{(++)}^{i_3 i_4} \right) \\{} & {} \qquad \; - 128 \left( f_{(+-)}^{i_1 i_2} f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} - f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_2 i_2} f_{(+-)}^{i_3 i_4} f_{(--)}^{i_3 i_4} \right. \\{} & {} \qquad \left. + 2 f_{(+-)}^{i_1 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_2 i_4} f_{(--)}^{i_3 i_4} -2 f_{(+-)}^{i_2 i_1} f_{(+-)}^{i_3 i_2} f_{(+-)}^{i_1 i_4} f_{(--)}^{i_3 i_4} \right) \\{} & {} \qquad \; + 128 \left( f_{(++)}^{i_1 i_2} f_{(++)}^{i_1 i_3} f_{(++)}^{i_2 i_4} f_{(++)}^{i_3 i_4} + f_{(++)}^{i_1 i_2} f_{(++)}^{i_2 i_4} f_{(+-)}^{i_1 i_3} f_{(+-)}^{i_4 i_3} \right. \\{} & {} \qquad \left. + f_{(--)}^{i_1 i_2} f_{(--)}^{i_2 i_4} f_{(+-)}^{i_3 i_1} f_{(+-)}^{i_3 i_4} + f_{(--)}^{i_1 i_2} f_{(--)}^{i_1 i_3} f_{(--)}^{i_2 i_4} f_{(--)}^{i_3 i_4} \right) , \end{aligned}$$
$$\begin{aligned}{} & {} Y: R_{acbd}R_{cedf}R_{egfh}R_{gahb} = 64 \big ( f^{i_3 i_4}_{(+-)} \big )^2 \left( \big ( f^{i_1 i_2}_{(++)} \big )^2 + 3 \big ( f^{i_1 i_2}_{(+-)} \big )^2 + \big ( f^{i_1 i_2}_{(--)} \big )^2 \right) \\{} & {} \qquad - 32 \left( f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(++)} f^{i_2 i_4}_{(++)} f^{i_3 i_4}_{(++)} - 4 f^{i_2 i_1}_{(+-)} f^{i_3 i_1}_{(+-)} f^{i_2 i_4}_{(++)} f^{i_3 i_4}_{(++)} - 12 f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(+-)} f^{i_2 i_4}_{(+-)} f^{i_3 i_4}_{(--)} \right. \\{} & {} \qquad \left. + 2 f^{i_1 i_2}_{(+-)} f^{i_1 i_3}_{(+-)} f^{i_4 i_2}_{(+-)} f^{i_4 i_3}_{(+-)} - 4 f^{i_1 i_2}_{(+-)} f^{i_1 i_3}_{(+-)} f^{i_2 i_4}_{(--)} f^{i_3 i_4}_{(--)} + f^{i_1 i_2}_{(--)} f^{i_1 i_3}_{(--)} f^{i_2 i_4}_{(--)} f^{i_3 i_4}_{(--)} \right) \\{} & {} \qquad + 48 \left( \big (f^{i_1 i_2}_{(++)} \big )^2 \big ( f^{i_3 i_4}_{(++)} \big )^2 + 2 \big ( f^{i_1 i_2}_{(++)} \big )^2 \big (f^{i_3 i_4}_{(--)} \big )^2 + \big (f^{i_1 i_2}_{(--)} \big )^2 \big ( f^{i_3 i_4}_{(--)} \big )^2 \right) , \\{} & {} Z: R_{acbd} R_{eafb} R_{gehc} R_{fgdh} = \frac{7}{512} R^4 - \frac{1}{8} R^2 \left( 13 \big ( f^{i_1 i_2}_{(++)} \big )^2 - 16 \big ( f^{i_1 i_2}_{(+-)} \big )^2 + 13 \big ( f^{i_1 i_2}_{(--)} \big )^2 \right) \\{} & {} \qquad + R \left( 12 f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(++)} f^{i_2 i_3}_{(++)} - 16 f^{i_2 i_1}_{(+-)} f^{i_3 i_1}_{(+-)} f^{i_2 i_3}_{(++)}\right. \\{} & {} \qquad + 7 f^{i_1 i_1}_{(+-)} f^{i_2 i_2}_{(+-)} f^{i_3 i_3}_{(+-)} - 21 f^{i_1 i_1}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_2}_{(+-)} \\{} & {} \qquad \left. + 14 f^{i_1 i_2}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_3 i_1}_{(+-)} - 16 f^{i_1 i_2}_{(+-)} f^{i_1 i_3}_{(+-)} f^{i_2 i_3}_{(--)} + 12 f^{i_1 i_2}_{(--)} f^{i_1 i_3}_{(--)} f^{i_2 i_3}_{(--)} \right) \\{} & {} \qquad - 44 \left( f^{i_1 i_2}_{(+-)} f^{i_2 i_1}_{(+-)} f^{i_3 i_4}_{(+-)} f^{i_3 i_4}_{(++)} - f^{i_1 i_1}_{(+-)} f^{i_2 i_2}_{(+-)} f^{i_3 i_4}_{(+-)} f^{i_3 i_4}_{(++)} \right. \\{} & {} \qquad \left. + 2 f^{i_1 i_1}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_4 i_2}_{(+-)} f^{i_3 i_4}_{(++)} - 2 f^{i_1 i_2}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_4 i_1}_{(+-)} f^{i_3 i_4}_{(++)} \right) \\{} & {} \qquad - 44 \left( f^{i_1 i_2}_{(+-)} f^{i_2 i_1}_{(+-)} f^{i_3 i_4}_{(+-)} f^{i_3 i_4}_{(--)} - f^{i_1 i_1}_{(+-)} f^{i_2 i_2}_{(+-)} f^{i_3 i_4}_{(+-)} f^{i_3 i_4}_{(--)} \right. \\{} & {} \qquad \left. + 2 f^{i_1 i_1}_{(+-)} f^{i_3 i_2}_{(+-)} f^{i_2 i_4}_{(+-)} f^{i_3 i_4}_{(--)} - 2 f^{i_2 i_1}_{(+-)} f^{i_3 i_2}_{(+-)} f^{i_1 i_4}_{(+-)} f^{i_3 i_4}_{(--)} \right) \\{} & {} \qquad - 8 \left( 5 f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(++)} f^{i_2 i_4}_{(++)} f^{i_3 i_4}_{(++)} - 16 f^{i_1 i_2}_{(+-)} f^{i_3 i_2}_{(+-)} f^{i_1 i_4}_{(++)} f^{i_3 i_4}_{(++)} - 32 f^{i_1 i_2}_{(++)} f^{i_1 i_3}_{(+-)} f^{i_2 i_4}_{(+-)} f^{i_3 i_4}_{(--)} \right. \\{} & {} \qquad \left. -16 f^{i_2 i_1}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_1 i_4}_{(--)} f^{i_3 i_4}_{(--)} + 5 f^{i_1 i_2}_{(--)} f^{i_1 i_3}_{(--)} f^{i_2 i_4}_{(--)} f^{i_3 i_4}_{(--)} \right) \\{} & {} \qquad + 4 \left( 5 \big ( f^{i_1 i_2}_{(++)} \big )^2 \big ( f^{i_3 i_4}_{(++)} \big )^2 + 16 \big ( f^{i_1 i_2}_{(++)} \big )^2 \big ( f^{i_3 i_4}_{(--)} \big )^2 \right. \\{} & {} \left. \qquad + 16 \big ( f^{i_1 i_2}_{(+-)} \big )^2 \big ( f^{i_3 i_4}_{(+-)} \big )^2 + 5 \big ( f^{i_1 i_2}_{(--)} \big )^2 \big ( f^{i_3 i_4}_{(--)} \big )^2 \right) . \end{aligned}$$

Note that all terms are symmetric under the interchange (3.23) since scalar quantities are parity even.

For some terms in GKLMQSX and Z, we have the identity

$$\begin{aligned}{} & {} \big (f^{i_3 i_4}_{(++)} - f^{i_3 i_4}_{(--)} \big ) \left( f^{i_1 i_2}_{(+-)} f^{i_2 i_1}_{(+-)} f^{i_3 i_4}_{(+-)} - f^{i_1 i_1}_{(+-)} f^{i_2 i_2}_{(+-)} f^{i_3 i_4}_{(+-)}\right. \nonumber \\{} & {} \left. \qquad + 2 f^{i_1 i_1}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_4 i_2}_{(+-)} - 2 f^{i_1 i_2}_{(+-)} f^{i_2 i_3}_{(+-)} f^{i_4 i_1}_{(+-)} \right) \nonumber \\{} & {} \quad = - 2 \Big (f^{i j}_{(++)} \delta ^{ij} - f^{ij}_{(--)} \delta ^{ij} \Big ) \textrm{det}f^{ij}_{(+-)} = 0. \end{aligned}$$
(D.1)

Since (D.1) is odd under the parity transformation (3.23), its vanishing can be easily understood from this property. This means that such terms can be written as \(- \frac{1}{4} R \, \textrm{det}f^{ij}_{(+-)}\). It is interesting to compare this expression for \(\textrm{det}f^{ij}_{(+-)}\) with the result in Eq. (C.2). Using the identity (D.1), it is straightforward to identity the basis elements for the quartic monomials in Table 2 which superficially look independent. The result is summarized in Table 5. The first 6 basis elements, from I to VI, are simply coming from the cubic ones (C.2) multiplied by R. The remaining 8 elements are newly generated in the quartic order.

Table 5 The 14 quartic basis elements

We will show that the 26 quartic monomials in Table 2 can be represented by using only 13 linearly independent basis elements. This means that the 14 basis elements listed in Table 5 are not completely independent. We will explain later how one linear relation among the quartic scalars arises. This implies that there must be 13 linear relations among the quartic monomials. A. Harvey found 6 such relations using the fact [50] that an \((n+1)\) index object anti-symmetrized on an n-dimensional manifold vanishes identically. However his results contain several errors and we will correct them here. We find that there are 7 more linear relations in addition to the 6 relations found by Harvey. We can find such linear relations by replacing the quartic basis elements in Table 5 in favor of the corresponding quartic monomials in Table 2. We first list the 12 linear relations between the Riemann monomials in Table 2.

$$\begin{aligned}{} & {} (a): \; -R^4 + 9 R^2 R_{ab} R_{ab} - 14 R R_{ab} R_{bc} R_{ca} - 6 \big ( R_{ab} R_{ab} \big )^2 + 12 R_{ab} R_{bc} R_{cd} R_{da} \\{} & {} \quad - 6 R R_{ab} R_{cd} R_{acbd} + 12 R_{ab} R_{ce} R_{ed} R_{acbd} = 0, \\{} & {} (b): \; - \frac{R^4}{4} + 2 R^2 R_{a b} R_{a b} -2 R R_{a b} R_{b c} R_{c a} - 2 R R_{a b} R_{c d} R_{a c b d}\\{} & {} \quad - \frac{1}{4} R^2 R_{a b c d} R_{a b c d} + R R_{a b} R_{a c d e} R_{b c d e} = 0, \\{} & {} (c): \; - 2 R^4 + 15 R^2 R_{a b} R_{a b} - 16 R R_{a b} R_{b c} R_{c a} \\{} & {} \quad -12 R R_{a b} R_{c d} R_{a c b d} -3 R_{a b} R_{a b} R_{c d e f} R_{c d e f} \\{} & {} \quad + 12 R_{a b} R_{b c} R_{a d e f} R_{c d e f} = 0, \\{} & {} (d): \; -\frac{11}{2} R^4 + \frac{87}{2} R^2 R_{a b} R_{a b} - 56 R R_{a b} R_{b c} R_{c a} -18 \big (R_{ab} R_{ab} \big )^2 + 36 R_{a b} R_{b c} R_{c d} R_{d a} \\{} & {} \quad - 18 R R_{a b} R_{c d} R_{a c b d} - \frac{3}{2} R^2 R_{a b c d} R_{a b c d} + \frac{3}{2} R_{a b} R_{a b} R_{c d e f} R_{c d e f} + 12 R_{a b} R_{c d} R_{a e c f} R_{b e d f} \\{} & {} \quad - 12 R_{a b} R_{c d} R_{a e b f} R_{c e d f} + 6 R_{a b} R_{c d} R_{a c e f} R_{b d e f} = 0, \\{} & {} (e): \; \frac{5}{4} R^4 - 9 R^2 R_{a b} R_{a b} + 8 R R_{a b} R_{b c} R_{c a} + 6 R R_{a b} R_{c d} R_{a c b d} + \frac{3}{4} R^2 R_{a b c d} R_{a b c d} \\{} & {} \quad - R R_{a b c d} R_{c d e f} R_{e f a b} + 2 R R_{a b c d} R_{a e c f} R_{b e d f} = 0, \\{} & {} (f): \; -2 R^4 + 15 R^2 R_{a b} R_{a b} -28 R R_{a b} R_{b c} R_{c a} +24 R_{a b} R_{b c} R_{c d} R_{d a} -3 R_{a b} R_{a b} R_{c d e f} R_{c d e f} \\{} & {} \quad - 24 R_{a b} R_{c d} R_{a e b f} R_{c e d f} + 12 R_{a b} R_{a c b d} R_{c e f g} R_{d e f g} = 0, \end{aligned}$$
$$\begin{aligned}{} & {} (g): \; -\frac{R^4}{2} + 3 R^2 R_{a b} R_{a b} - 8 R R_{a b} R_{b c} R_{c a} + 4 R R_{a b} R_{c d} R_{a c b d}\\{} & {} \quad + 8 R_{a b} R_{b c} R_{c d} R_{d a} + \frac{1}{2} R^2 R_{a b c d} R_{a b c d}\\{} & {} \quad -8 R_{a b} R_{c d} R_{a e b f} R_{c e d f} - R_{a b} R_{a b} R_{c d e f} R_{c d e f} \\{} & {} \quad - 4 R_{a b} R_{c d} R_{a c e f} R_{b d e f} - R R_{a b c d} R_{c d e f} R_{e f a b} \\{} & {} \quad + 4 R_{a b} R_{c d e f} R_{c d g a} R_{e f g b} = 0, \\{} & {} (h): \; 4 R^4 - 30 R^2 R_{a b} R_{a b} +32 R R_{a b} R_{b c} R_{c a} + 6 \left( R_{a b} R_{a b}\right) ^2 -12 R_{a b} R_{b c} R_{c d} R_{d a} \\{} & {} \quad + 18 R R_{a b} R_{c d} R_{a c b d} + \frac{3}{2} R^2 R_{a b c d} R_{a b c d} - 6 R_{a b} R_{c d} R_{a c e f} R_{b d e f} \\{} & {} \quad -\frac{3}{2} R R_{a b c d} R_{c d e f} R_{e f a b} + 12 R_{a b} R_{c e d f} R_{a d c g} R_{b f e g} = 0, \end{aligned}$$
$$\begin{aligned}{} & {} (i): \;-5 R^4 + 36 R^2 R_{a b} R_{a b} - 64 R R_{a b} R_{b c} R_{c a} \\{} & {} \quad + 48 R_{a b} R_{b c} R_{c d} R_{d a} - 48 R_{a b} R_{c d} R_{a e b f} R_{c e d f} \\{} & {} \quad -3 \left( R_{a b c d} R_{a b c d}\right) ^2 + 12 R_{a b c d} R_{a b c e} R_{d h f g } R_{e h f g} = 0, \\{} & {} (j): \; R^4 - 6 R^2 R_{a b} R_{a b} + 16 R R_{a b} R_{b c} R_{c a} \\{} & {} \quad - 16 R_{a b} R_{b c} R_{c d} R_{d a} - 8 R R_{a b} R_{c d} R_{a c b d} - \frac{1}{2} R^2 R_{a b c d} R_{a b c d} \\{} & {} \quad +4 R_{a b} R_{c d} R_{a c e f} R_{b d e f} +16 R_{a b} R_{c d} R_{a e b f} R_{c e d f} \\{} & {} \quad + R R_{a b c d} R_{c d e f} R_{e f a b} + \frac{1}{2} \left( R_{a b c d} R_{a b c d}\right) ^2 \\{} & {} \quad + 4 R_{a b c d} R_{a b e f} R_{c g e h} R_{d g f h} - R_{a b c d} R_{c d e f} R_{e f g h} R_{g h a b} - 2 R_{a b c d} R_{a b e f} R_{c e g h} R_{g h d f} = 0, \\{} & {} (k): \; -\frac{23}{6} R^4 + 28 R^2 R_{a b} R_{a b} -\frac{128}{3} R R_{a b} R_{b c} R_{c a} -8 \left( R_{a b} R_{a b}\right) ^2 + 32 R_{a b} R_{b c} R_{c d} R_{d a} \\{} & {} \quad - R^2 R_{a b c d} R_{a b c d} + 4 R_{a b} R_{a b} R_{c d e f} R_{c d e f} - 32 R_{a b} R_{c d} R_{a e b f} R_{c e d f} -\frac{3}{2} \left( R_{a b c d} R_{a b c d}\right) {}^2 \\{} & {} \quad + 8 R_{a c b d} R_{c e d f} R_{e g f h} R_{a g b h} + R_{a b c d} R_{c d e f} R_{e f g h} R_{g h a b} = 0, \\{} & {} (l): \; \frac{17}{12} R^4 - 12 R^2 R_{a b} R_{a b} - \frac{128}{3} R R_{a b} R_{b c} R_{c a} - 6 \left( R_{a b} R_{a b}\right) ^2 + 84 R_{a b} R_{b c} R_{c d} R_{d a} \\{} & {} \quad + 72 R R_{a b} R_{c d} R_{a c b d} + \frac{5}{2} R^2 R_{a b c d} R_{a b c d} -20 R_{a b} R_{c d} R_{a c e f} R_{b d e f} + 8 R_{a b} R_{a b} R_{c d e f} R_{c d e f} \\{} & {} \quad - 104 R_{a b} R_{c d} R_{a e b f} R_{c e d f} - 6 R R_{a b c d} R_{c d e f} R_{e f a b} -\frac{13}{4} \left( R_{a b c d} R_{a b c d}\right) ^2 \\{} & {} \quad + \frac{13}{2} R_{a b c d} R_{c d e f} R_{e f g h} R_{g h a b} - 3 R_{a b c d} R_{a b e f} R_{c e g h} R_{g h d f} + 32 R_{a c b d} R_{a e b f} R_{c h e g } R_{d h f g} = 0. \end{aligned}$$

Our results \((a), \, (b)\) and (c) precisely reproduce Eqs. (11), (9), and (10) in Ref. [50], respectively.Footnote 11 Unfortunately, Eqs. (15), (17), (18), and (19) in Ref. [50] contain errors too.Footnote 12 For example, Eq. (15) in Ref. [50] should read as

$$\begin{aligned}{} & {} -\frac{5}{4} R^4 + \frac{39}{4} R^2 R_{a b} R_{a b} - 12 R R_{a b} R_{b c} R_{c a} - 3 \big (R_{ab} R_{ab} \big )^2 + 6 R_{a b} R_{b c} R_{c d} R_{d a} \nonumber \\{} & {} \quad - 5 R R_{a b} R_{c d} R_{a c b d} - \frac{1}{4} R^2 R_{a b c d} R_{a b c d} + \frac{1}{4} R_{a b} R_{a b} R_{c d e f} R_{c d e f} + 2 R_{a b} R_{b c} R_{a d e f} R_{c d e f} \nonumber \\{} & {} \quad + 2 R_{a b} R_{c d} R_{a e c f} R_{b e d f} - 2 R_{a b} R_{c d} R_{a e b f} R_{c e d f} + R_{a b} R_{c d} R_{a c e f} R_{b d e f} = 0. \end{aligned}$$
(D.2)

In particular, Eq. (15) in Ref. [50] was missing the term, \(- \frac{1}{4} R^2 R_{a b c d} R_{a b c d}\). The correct equation (D.2) can simply be obtained by adding (c) and (d) and dividing by 6. Since Eq. (17) in Ref. [50] used the incorrect equation (15), it is incorrect too. The correct forms of Eqs. (17) and (19) are given by, respectively,Footnote 13

$$\begin{aligned}{} & {} \text {(17)}: \; R^4 - 6 R^2 R_{a b} R_{a b} + 5 R R_{a b} R_{b c} R_{c a} + 6 R_{a b} R_{c e} R_{e d} R_{a c b d} + \frac{3}{2} R R_{a b} R_{c d e a} R_{c d e b} \nonumber \\{} & {} \quad + 3 R_{a b} R_{b c a d} R_{e f g c} R_{e f g d} - 3 R_{a b} R_{c d e f} R_{e f g a} R_{g b c d}\nonumber \\{} & {} \quad + 6 R_{a b} R_{c e d f} R_{e g f a} R_{g c b d} = 0, \end{aligned}$$
(D.3)
$$\begin{aligned}{} & {} \text {(19)}: \; - \frac{5}{48} R^4 + \frac{1}{2} R^2 R^2_{a b} -\frac{1}{3} R R_{a b} R_{b c} R_{c a} + \frac{1}{16} R_{abcd}^4 - R_{a b} R_{c d e f} R_{e f g a} R_{g b c d} \nonumber \\{} & {} \quad \; + 2 R_{ab} R_{c e d f} R_{e g f a} R_{g c b d} + R_{a b} R_{b c a d} R_{e f g c} R_{g d e f} + R_{a c b d} R_{c e d f} R_{e g f h} R_{a g b h} \nonumber \\{} & {} \quad \; - 2 R_{a b c d} R_{a b e f} R_{c g e h} R_{d g f h} - 2 R_{a c b d} R_{a e b f} R_{c h e g} R_{d h f g}\nonumber \\{} & {} \quad + \frac{1}{8} R_{a b c d} R_{c d e f} R_{e f g h} R_{g h a b} \nonumber \\{} & {} \quad \; + R_{a b c d} R_{a b e f} R_{c e g h} R_{g h d f} - R_{a b c d} R_{a b c e} R_{d h f g} R_{f g e h} = 0. \end{aligned}$$
(D.4)

Eq. (D.3) can be reproduced from our results by considering the combination, \(\frac{1}{4} (f) - \frac{3}{4} (g) + \frac{1}{2} (h) + \frac{1}{2} (a) + \frac{3}{2}(b)\). Using 12 linear equations \((a) \sim (l)\), Eq. (D.4) can be further reduced as

$$\begin{aligned}{} & {} - \frac{1}{4} R^4 + R^2 R_{a b} R_{a b} + R_{ab}^4 - 2 R_{a b} R_{b c} R_{c d} R_{d a} \nonumber \\{} & {} \quad - 2 R_{a b} R_{c d} R_{e f a c} R_{e f b d} + 2 R_{a c b d} R_{c e d f} R_{e g f h} R_{g a h b} \nonumber \\{} & {} \quad - 4 R_{a c b d} R_{e a f b} R_{f g d h} R_{g e h c} + \frac{3}{2} R_{a b c d} R_{a b e f} R_{c e g h} R_{g h d f} \nonumber \\{} & {} \quad - R_{a b c d} R_{a b c e} R_{f g h d} R_{h e f g} = 0. \end{aligned}$$
(D.5)

Using the notation (4.26), Eqs. (D.4) and (D.5) are equally written as

$$\begin{aligned}{} & {} \frac{R^4}{16} - 12 R^2 \text {Tr} \left( A_+^2 + A_-^2 \right) + 128 R \text {Tr} \left( A_+^3 + A_-^3 \right) - 768 \text {Tr} \left( A_+^4 + A_-^4 \right) \nonumber \\{} & {} \quad + 384 \left( \text {Tr} \big ( A_+^2 \big ) \text {Tr} \big ( A_+^2 \big ) + \text {Tr} \big ( A_-^2 \big ) \text {Tr} \big ( A_-^2 \big ) \right) = 0. \end{aligned}$$
(D.6)

The reason why the matrix B does not appear in (D.6) is that Eqs. (D.4) and (D.5) originated from a quartic polynomial of Weyl tensors. The validity of the linear relation (D.6) may be understood by the fact that the four elements, \(III, \, IV, \, X\) and XIV, in Table 5 can be shown to be implicitly connected by this relationship. We have confirmed that Eq. (D.4) cannot be derived as a linear combination of the 12 equations, \((a) \sim (l)\), by checking all possible cases out of 26 terms. This means that Eq. (D.4) must be regarded as a new linear relation in addition to the 12 relations, \((a) \sim (l)\). It is quite revealing to see that Eq. (D.6) is an identity for general symmetric \(3 \times 3\) matrices \(A_\pm \) satisfying the property \(\text {Tr} A_+ = \text {Tr} A_- = \frac{R}{8}\). It can be most easily checked in a diagonalized frame such that \(A_\pm = \text {diag} (a^1_\pm , a^2_\pm , a^3_\pm )\) and \(a^1_+ + a^2_+ + a^3_+ = a^1_- + a^2_- + a^3_-\). Since Eq. (D.6) provides one more linear relation among the quartic basis elements in Table 5, the number of linearly independent basis elements for quartic scalars is 13.

Note added. The above linear relations, (D.4), (D.5), and (D.6), have been derived from the identity \({R^{ab}}_{[ab} {R^{cd}}_{cd} {R^{ef}}_{ef} {R^{gh}}_{gh]} = 0\) whose expansion is very complicated [50]. But we found that Eq. (D.6) can be rewritten as \(P- 6\,S + 3X = R R_{abcd} R_{cedf} R_{eafb} - 6 R_{ab} R_{cedf} R_{egfa} R_{gcbd} + 3 R_{abcd} R_{efab} R_{gche} R_{gdhf} =0\) using only the three members in Table 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, Y., Hwang, CO. & Yang, H.S. Algebraic properties of Riemannian manifolds. Gen Relativ Gravit 55, 92 (2023). https://doi.org/10.1007/s10714-023-03141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03141-4

Keywords

Navigation