Skip to main content

Advertisement

Log in

Influence of anisotropic matter on the Alcubierre metric and other related metrics: revisiting the problem of negative energy

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Negative energy scenarios are the most widely studied for the warp metric. In fact, the prevailing view in the community so far has been that the warp metric necessarily has negative energies. In this work it is shown that the issue of negative energy densities associated with the Alcubierre warp metric with a general form function and similar metrics can be addressed when the whole non-vacuum Einstein equations of the system are examined. To this end, we have considered matter content in the form of anisotropic fluids. We have succeeded in writing the Einstein equations in such a way that some general constraints on the material content become evident. This means that, in rectangular coordinates, the energy density depends necessarily on the tangential pressures of the fluid. For matter such as dust or isotropic fluids we find that that density and other related quantities become identically zero. This makes the negative energy problem spurious. It is also revealed that constructing Alcubierre-based metrics using cylindrical and spherical coordinates results in a system of equations that are amenable to more systematic analysis. The field equations constrain the dependence of the form function and how this impacts the matter content. In all cases we determine that energy density is not mandatory negative, despite the recurrent claims in the literature. This result prompts a reevaluation of the negative energy requirements and underscore the importance of cylindrical and spherical type-warps to demonstrate that negative energy density is not an intrinsic unavoidable feature of warp drives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The manuscript does not contain any material from third parties; all of the material is owned by the authors and/or no permissions are required.

Code Availability

Not applicable.

References

  1. Alcubierre, M.: The Warp drive: hyperfast travel within general relativity. Class. Quant. Grav. 11, 73–77 (1994) arXiv:gr-qc/0009013. https://doi.org/10.1088/0264-9381/11/5/001

  2. Visser, M.: Lorentzian Wormholes. From Einstein to Hawking, (1995)

  3. Everett, A.E.: Warp drive and causality. Phys. Rev. D 53, 7365–7368 (1996). https://doi.org/10.1103/PhysRevD.53.7365

    Article  ADS  MathSciNet  Google Scholar 

  4. Krasnikov, S.V.: Hyperfast travel in general relativity. Phys. Rev. D 57, 4760–4766 (1998) arXiv:gr-qc/9511068. https://doi.org/10.1103/PhysRevD.57.4760

  5. Hiscock, W.A.: Quantum effects in the Alcubierre warp drive space-time. Class. Quant. Grav. 14, 183–188 (1997) arXiv:gr-qc/9707024. https://doi.org/10.1088/0264-9381/14/11/002

  6. Everett, A.E., Roman, T.A.: A Superluminal subway: the Krasnikov tube. Phys. Rev. D 56, 2100–2108 (1997) arXiv:gr-qc/9702049. https://doi.org/10.1103/PhysRevD.56.2100

  7. Visser, M.: General relativistic energy conditions: The hubble expansion in the epoch of galaxy formation. Phys. Rev. D 56, 7578–7587 (1997) arXiv:gr-qc/9705070. https://doi.org/10.1103/PhysRevD.56.7578

  8. Olum, K.D.: Superluminal travel requires negative energies. Phys. Rev. Lett. 81, 3567–3570 (1998) arXiv:gr-qc/9805003. https://doi.org/10.1103/PhysRevLett.81.3567

  9. Low, R.J.: Speed limits in general relativity. Class. Quant. Grav. 16, 543–549 (1999) arXiv:gr-qc/9812067. https://doi.org/10.1088/0264-9381/16/2/016

  10. Pfenning, M.J.: Quantum inequality restrictions on negative energy densities in curved space-times. Other thesis April (1998)

  11. Gonzalez-Diaz, P.F.: Warp drive space-time. Phys. Rev. D 62, 044005 (2000) arXiv:gr-qc/9907026. https://doi.org/10.1103/PhysRevD.62.044005

  12. Visser, M., Barcelo, C.: Energy conditions and their cosmological implications. In: 3rd International Conference on Particle Physics and the Early Universe, pp. 98–112 (2000). https://doi.org/10.1142/9789812792129_0014

  13. Clark, C., Hiscock, W.A., Larson, S.L.: Null geodesics in the Alcubierre warp drive space-time: The View from the bridge. Class. Quant. Grav. 16, 3965–3972 (1999) arXiv:gr-qc/9907019. https://doi.org/10.1088/0264-9381/16/12/313

  14. Van Den Broeck, C.: A ’Warp drive’ with reasonable total energy requirements. Class. Quant. Grav. 16, 3973–3979 (1999) arXiv:gr-qc/9905084. https://doi.org/10.1088/0264-9381/16/12/314

  15. Van Den Broeck, C.: On the (im)possibility of warp bubbles (1999) arXiv:gr-qc/9906050

  16. Barcelo, C., Visser, M.: Scalar fields, energy conditions, and traversable wormholes. Class. Quant. Grav. 17, 3843–3864 (2000) arXiv:gr-qc/0003025. https://doi.org/10.1088/0264-9381/17/18/318

  17. Barcelo, C., Visser, M.: Twilight for the energy conditions? Int. J. Mod. Phys. D 11, 1553–1560 (2002) arXiv:gr-qc/0205066. https://doi.org/10.1142/S0218271802002888

  18. Lobo, F., Crawford, P.: Weak energy condition violation and superluminal travel. Lect. Notes Phys. 617, 277–291 (2003) arXiv:gr-qc/0204038

  19. Lobo, F.S.N., Visser, M.: Linearized warp drive and the energy conditions. In: 27th Spanish Relativity Meeting: Beyond General Relativity (ERE 2004) (2004)

  20. Lobo, F.S.N., Visser, M.: Fundamental limitations on ’warp drive’ spacetimes. Class. Quant. Grav. 21, 5871–5892 (2004) arXiv:gr-qc/0406083. https://doi.org/10.1088/0264-9381/21/24/011

  21. Curiel, E.: A Primer on Energy Conditions. Einstein Stud. 13, 43–104 (2017) arXiv:1405.0403 [physics.hist-ph]. https://doi.org/10.1007/978-1-4939-3210-8_3

  22. Lobo, F.S.N.: Wormholes, warp drives and energy conditions. Fundam. Theo. Phys. (2017). https://doi.org/10.1007/978-3-319-55182-1

    Article  MATH  Google Scholar 

  23. Alcubierre, M., Lobo, F.S.N.: Warp drive basics. Fundam. Theor. Phys. 189, 257–279 (2017). https://doi.org/10.1007/978-3-319-55182-1_11

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kontou, E.-A., Sanders, K.: Energy conditions in general relativity and quantum field theory. Class. Quant. Grav. 37(19), 193001 (2020) arXiv:2003.01815 [gr-qc]. https://doi.org/10.1088/1361-6382/ab8fcf

  25. Bobrick, A., Martire, G.: Introducing Physical Warp Drives. Class. Quant. Grav. 38(10), 105009 (2021) arXiv:2102.06824 [gr-qc]. https://doi.org/10.1088/1361-6382/abdf6e

  26. Lentz, E.W.: Hyper-Fast Positive Energy Warp Drives. In: 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (2021)

  27. Santiago, J., Schuster, S., Visser, M.: Generic warp drives violate the null energy condition. Phys. Rev. D 105(6), 064038 (2022) arXiv:2105.03079 [gr-qc]. https://doi.org/10.1103/PhysRevD.105.064038

  28. Schuster, S., Santiago, J., Visser, M.: ADM mass in warp drive spacetimes (2022) arXiv:2205.15950 [gr-qc]

  29. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Dust content solutions for the alcubierre warp drive spacetime. Eur. Phys. J. C 80(8), 786 (2020) arXiv:2008.06560 [gr-qc]. https://doi.org/10.1140/epjc/s10052-020-8355-2

  30. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Perfect fluid warp drive solutions with the cosmological constant. Eur. Phys. J. Plus 136(9), 902 (2021) arXiv:2108.10960 [gr-qc]. https://doi.org/10.1140/epjp/s13360-021-01899-7

  31. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Charged dust solutions for the warp drive spacetime. Gen. Relativ. Grav. 53(2), 23 (2021) arXiv:2102.05119 [gr-qc]. https://doi.org/10.1007/s10714-021-02799-y

  32. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Warp drive dynamic solutions considering different fluid sources. In: 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (2021)

  33. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Fluid dynamics in the warp drive spacetime geometry. Eur. Phys. J. C 81(2), 133 (2021) arXiv:2101.11467 [gr-qc]. https://doi.org/10.1140/epjc/s10052-021-08921-3

  34. Abellán, G., Bolivar, N., Vasilev, I.: Alcubierre warp drive in spherical coordinates with some matter configurations. Eur. Phys. J. C 83(1), 7 (2023). https://doi.org/10.1140/epjc/s10052-022-11091-5

    Article  ADS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to the conceptualization and analysis. Writing of the manuscript by NB and GA.

Corresponding author

Correspondence to Nelson Bolivar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We dedicate this work to the memory of our beloved friend and colleague Jesus Romero. We will miss you.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abellán, G., Bolivar, N. & Vasilev, I. Influence of anisotropic matter on the Alcubierre metric and other related metrics: revisiting the problem of negative energy. Gen Relativ Gravit 55, 60 (2023). https://doi.org/10.1007/s10714-023-03105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03105-8

Keywords

Navigation