Skip to main content

Advertisement

Log in

Search for neutrino masses in the Barrow holographic dark energy cosmology with Hubble horizon as IR cutoff

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Hubble IR cutoff in Barrow holographic dark energy in presence of neutrino masses using the latest observational data is investigated. The aim of this paper is twofold. At first we want to show that as it is well known, for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. We show that while the Hubble IR cutoff in standard holographic dark energy (HDE) prohibits accelerating expansion of the universe, the exponent parameter \(\Delta \) in Barrow holographic dark energy (BHDE) significantly affect EoS parameter and under condition, \(\Delta >\frac{\Omega _m+2\Omega _r}{\Omega _{B}}\), in (BHDE), the universe could experience accelerated expansion regime. The other is put constrain on \(\sum m_{\nu }\), \(N_{eff}\), \(\Delta \) and the other parameters of the model using latest observational data. For this purpose, we employ the current cosmological observations, including the baryon acoustic oscillation measurements, the type Ia supernova data including Both Pantheon and Union2 data and the latest direct measurement of \(H_{0}\) as well. Under the constraint of the all-data combination, we obtain \(\sum m_{\nu }<0.134~\textrm{eV} \ \ 95\% CL\) and \(N_{eff}=2.92^{+0.12}_{-0.12} \ 68\% CL\) which are in good agreement with Planck 2018 results. Also, we find the best value for exponent parameter as \(\Delta =1.74^{+0.25}_{-0.17} \ 68\% CL\). For the best values of \(\Delta \) and the other parameters of the model the EoS parameter shows the favored cosmological evolution for the universe which starts from the radiation dominated, passing the matter dominated and finally reaches the dark energy dominated. We also consider the holographic dark energy with interacting term \(Q=3\beta H\rho _{B}\), for this case under the condition \(\Delta -3\beta >\frac{\Omega _m+2\Omega _r}{\Omega _{B}}\) the model can describe the late time acceleration of the Universe. For this case, we find \(\Delta =0.52^{+0.1}_{-0.08}\) and \(\beta =-0.15^{+0.06}_{-0.06}\) 68% CL,\(\sum m_{\nu }<0.152~\textrm{eV} \ \ 95\% CL\) and \(N_{eff}=3.05^{+0.13}_{-0.13} \ 68\% CL\) which are in good agreement with recent Planck results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The manuscript has no associated data or the data will not be deposited.

References

  1. Dunkley, J., et al.: Astrophys. J. 701, 1804 (2009)

    Article  ADS  Google Scholar 

  2. Gold, B., et al.: Astrophys. J. Suppl. 180, 265 (2009)

    Article  ADS  Google Scholar 

  3. Hill, R.S., et al.: Astrophys. J. Suppl. 180, 246 (2009)

    Article  ADS  Google Scholar 

  4. Hinshaw, G., et al.: Astrophys. J. Suppl. 180, 225 (2009)

    Article  ADS  Google Scholar 

  5. Nolta, M.R., et al.: Astrophys. J. Suppl. 180, 296 (2009)

    Article  ADS  Google Scholar 

  6. Komatsu, E., et al.: Astrophys. J. Suppl. 180, 330 (2009)

    Article  ADS  Google Scholar 

  7. Knop, R.A., et al.: Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  8. Garnavish, P.M., et al.: Astrophys. J. 493, L53 (1998)

    Article  ADS  Google Scholar 

  9. Perlmutter, S., et al.: Astrophys. J. 483, 565 (1997)

    Article  ADS  Google Scholar 

  10. Frieman, J.A., et al.: Astrophys. J. 135, 338 (2008)

    Google Scholar 

  11. Sako, M., et al.: Astrophys. J. 135, 348 (2008)

    Google Scholar 

  12. Riess, A.G., et al.: Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  13. Leauthand, A., et al.: Astrophys. J. 709, 97 (2010)

    Article  ADS  Google Scholar 

  14. Kubo, J.M., et al.: Astrophys. J. 702, L110 (2009)

    Article  ADS  Google Scholar 

  15. Sato, M., et al.: Astrophys. J. 701, 945 (2009)

    Article  ADS  Google Scholar 

  16. Parkinson, D., et al.: Mon. Not. R. Astron. Soc. 401, 2169 (2010)

    Article  ADS  Google Scholar 

  17. Percival, W., et al.: Mon. Not. R. Astron. Soc. 401, 2148 (2010)

    Article  ADS  Google Scholar 

  18. Wang, X., et al.: Mon. Not. R. Astron. Soc. 394, 1775 (2009)

    Article  ADS  Google Scholar 

  19. Benitez, N., et al.: Astrophys. J. 691, 241 (2009)

    Article  ADS  Google Scholar 

  20. Cole, S., et al.: Mon. Not. R. Astron. Soc. 362, 505 (2005)

    Article  ADS  Google Scholar 

  21. Croton, D.J., et al.: Mon. Not. R. Astron. Soc. 356, 1155 (2005)

    Article  ADS  Google Scholar 

  22. Wild, V., et al.: Mon. Not. R. Astron. Soc. 356, 247 (2005)

    Article  ADS  Google Scholar 

  23. Yan, R., et al.: Mon. Not. R. Astron. Soc. 398, 735 (2009)

    Article  ADS  Google Scholar 

  24. Sawicki, M., et al.: Astrophys. J. 687, 884 (2008)

    Article  ADS  Google Scholar 

  25. Schiavon, R.P., et al.: Astrophys. J. 651, L93 (2006)

    Article  ADS  Google Scholar 

  26. Lesgourgues, J., Pastor, S.: Phys. Rep. 429, 307 (2006). arXiv:astro-ph/0603494

    Article  ADS  Google Scholar 

  27. Xing, Z.: arXiv:1909.09610 [hep-ph]

  28. Hu, W., Eisenstein, D.J., Tegmark, M.: Weighing neutrinos with galaxy surveys. Phys. Rev. Lett. 80, 5255 (1998). arXiv:astro-ph/9712057

    Article  ADS  Google Scholar 

  29. Reid, B.A., Verde, L., Jimenez, R., Mena, O.: Robust neutrino constraints by combining low redshift observations with the CMB. JCAP 1001, 003 (2010). arXiv:0910.0008 [astro-ph.CO]

    Article  ADS  Google Scholar 

  30. Thomas, S.A., Abdalla, F.B., Lahav, O.: Upper bound of 0.28eV on the neutrino masses from the largest photometric redshift survey. Phys. Rev. Lett. 105, 031301 (2010). arXiv:0911.5291 [astro-ph.CO]

    Article  ADS  Google Scholar 

  31. Carbone, C., Verde, L., Wang, Y., Cimatti, A.: Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys. JCAP 1103, 030 (2011). arXiv:1012.2868 [astro-ph.CO]

    Article  ADS  Google Scholar 

  32. Li, H., Zhang, X.: Constraining dynamical dark energy with a divergence-free parametrization in the presence of spatial curvature and massive neutrinos. Phys. Lett. B 713, 160 (2012). arXiv:1202.4071 [astro-ph.CO]

    Article  ADS  Google Scholar 

  33. Wang, X., Meng, X.L., Zhang, T.J., Shan, H., Gong, Y., Tao, C., Chen, X., Huang, Y.F.: Observational constraints on cosmic neutrinos and dark energy revisited. JCAP 1211, 018 (2012). arXiv:1210.2136 [astro-ph.CO]

    Article  ADS  Google Scholar 

  34. Li, Y.H., Wang, S., Li, X.D., Zhang, X.: Holographic dark energy in a universe with spatial curvature and massive neutrinos: a full Markov Chain Monte Carlo exploration. JCAP 1302, 033 (2013). arXiv:1207.6679 [astro-ph.CO]

    Article  ADS  Google Scholar 

  35. Audren, B., Lesgourgues, J., Bird, S., Haehnelt, M.G., Viel, M.: Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors. JCAP 1301, 026 (2013). arXiv:1210.2194 [astro-ph.CO]

    Article  ADS  Google Scholar 

  36. Riemer-Sørensen, S., Parkinson, D., Davis, T.M.: Combining Planck data with large scale structure information gives a strong neutrino mass constraint. Phys. Rev. D 89, 103505 (2014). arXiv:1306.4153 [astro-ph.CO]

    Article  ADS  Google Scholar 

  37. Boriero, D., Schwarz, D.J., Velte, H.E.S.: Universe 5(10), 203 (2019)

    Article  ADS  Google Scholar 

  38. Font-Ribera, A., McDonald, P., Mostek, N., Reid, B.A., Seo, H.J., Slosar, A.: DESI and other dark energy experiments in the era of neutrino mass measurements. JCAP 1405, 023 (2014). arXiv:1308.4164 [astro-ph.CO]

    Article  ADS  Google Scholar 

  39. Zhang, J.F., Li, Y.H., Zhang, X.: Cosmological constraints on neutrinos after BICEP2. Eur. Phys. J. C 74, 2954 (2014). arXiv:1404.3598 [astro-ph.CO]

    Article  ADS  Google Scholar 

  40. Zhang, J.F., Geng, J.J., Zhang, X.: Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints. JCAP 1410(10), 044 (2014). arXiv:1408.0481 [astro-ph.CO]

    Article  ADS  Google Scholar 

  41. Geng, C.Q., Lee, C.C., Shen, J.L.: Matter power spectra in viable \(f(R)\) gravity models with massive neutrinos. Phys. Lett. B 740, 285 (2015). arXiv:1411.3813 [astro-ph.CO]

    Article  ADS  MATH  Google Scholar 

  42. Li, Y.H., Zhang, J.F., Zhang, X.: Probing \(f(R)\) cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure. Phys. Lett. B 744, 213 (2015). arXiv:1502.01136 [astro-ph.CO]

    Article  ADS  Google Scholar 

  43. P. A. R. Ade, et al.: [Planck Collaboration], Planck 2015 results. XIII. cosmological parameters, Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589 [astro-ph.CO]

  44. Geng, C.Q., Lee, C.C., Myrzakulov, R., Sami, M., Saridakis, E.N.: Observational constraints on varying neutrino-mass cosmology. JCAP 1601(01), 049 (2016). arXiv:1504.08141 [astro-ph.CO]

    Article  ADS  Google Scholar 

  45. Chen, Y., Xu, L.: Galaxy clustering, CMB and supernova data constraints on \(\varphi \)CDM model with massive neutrinos. Phys. Lett. B 752, 66 (2016). arXiv:1507.02008 [astro-ph.CO]

    Article  ADS  Google Scholar 

  46. Allison, R., Caucal, P., Calabrese, E., Dunkley, J., Louis, T.: Towards a cosmological neutrino mass detection. Phys. Rev. D 92(12), 123535 (2015). arXiv:1509.07471 [astro-ph.CO]

    Article  ADS  Google Scholar 

  47. Chen, Y., Ratra, B., Biesiada, M., Li, S., Zhu, Z.H.: Constraints on non-flat cosmologies with massive neutrinos after Planck 2015. Astrophys. J 829(2), 61 (2016). arXiv:1603.07115 [astro-ph.CO]

    Article  ADS  Google Scholar 

  48. Lu, J., Liu, M., Wu, Y., Wang, Y.: Cosmic constraint on massive neutrinos in viable \(f(R)\) gravity with producing \(\Lambda \)CDM background expansion. Eur. Phys. J. C 76(12), 679 (2016). arXiv:1606.02987 [astro-ph.CO]

    Article  ADS  Google Scholar 

  49. Kumar, S., Nunes, R.C.: Probing the interaction between dark matter and dark energy in the presence of massive neutrinos. Phys. Rev. D 94(12), 123511 (2016). arXiv:1608.02454 [astro-ph.CO]

    Article  ADS  Google Scholar 

  50. Vagnozzi, S., Giusarma, E., Mena, O., Freese, K., Gerbino, M., Ho, S., Lattanzi, M.: Unveiling \(\nu \) secrets with cosmological data: neutrino masses and mass hierarchy. Phys. Rev. D 96(12), 123503 (2017). arXiv:1701.08172 [astro-ph.CO]

    Article  ADS  Google Scholar 

  51. Zhang, X.: Weighing neutrinos in dynamical dark energy models. Sci. China Phys. Mech. Astron. 60(6), 060431 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  52. Zhao, M.M., Zhang, J.F., Zhang, X.: Measuring growth index in a universe with massive neutrinos: a revisit of the general relativity test with the latest observations. Phys. Lett. B 779, 473 (2018). arXiv:1710.02391 [astro-ph.CO]

    Article  ADS  Google Scholar 

  53. Wang, L.F., Zhang, X.N., Zhang, J.F., Zhang, X.: Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology. Phys. Lett. B 782, 87 (2018). arXiv:1802.04720 [astro-ph.CO]

    Article  ADS  Google Scholar 

  54. Li, E.K., Zhang, H., Du, M., Zhou, Z.H., Xu, L.: Probing the neutrino mass hierarchy beyond \(\Lambda \)CDM model. JCAP 1808, 042 (2018). arXiv:1703.01554 [astro-ph.CO]

    Article  ADS  Google Scholar 

  55. Oldengott, I.M., Barenboim, G., Kahlen, S., Salvado, J., Schwarz, D.J.: JCAP 04, 049 (2019)

    Article  ADS  Google Scholar 

  56. Feng, L., Zhang, J.F., Zhang, X.: Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter. Phys. Dark Univ. 23, 100261 (2019). arXiv:1712.03148 [astro-ph.CO]

    Article  Google Scholar 

  57. Zhao, M.M., Li, Y.H., Zhang, J.F., Zhang, X.: Constraining neutrino mass and extra relativistic degrees of freedom in dynamical dark energy models using Planck 2015 data in combination with low-redshift cosmological probes: basic extensions to \(\Lambda \)CDM cosmology. Mon. Not. R. Astron. Soc. 469(2), 1713 (2017). arXiv:1608.01219 [astro-ph.CO]

    Article  ADS  Google Scholar 

  58. Zhang, X.: Impacts of dark energy on weighing neutrinos after Planck 2015. Phys. Rev. D 93(8), 083011 (2016). arXiv:1511.02651 [astro-ph.CO]

    Article  ADS  Google Scholar 

  59. Wang, S., Wang, Y.F., Xia, D.M., Zhang, X.: Impacts of dark energy on weighing neutrinos: mass hierarchies considered. Phys. Rev. D 94(8), 083519 (2016). arXiv:1608.00672 [astro-ph.CO]

    Article  ADS  Google Scholar 

  60. Giusarma, E., Gerbino, M., Mena, O., Vagnozzi, S., Ho, S., Freese, K.: Improvement of cosmological neutrino mass bounds. Phys. Rev. D 94(8), 083522 (2016). arXiv:1605.04320 [astro-ph.CO]

    Article  ADS  Google Scholar 

  61. Roy, S., Choudhury, S., Choubey, S.: Updated bounds on sum of neutrino masses in various cosmological scenarios. JCAP 1809, 017 (2018). arXiv:1806.10832 [astro-ph.CO]

    Google Scholar 

  62. Allahverdi, R., Gao, Y., Knockel, B., Shalgar, S.: Indirect signals from solar dark matter annihilation to long-lived right-handed neutrinos. Phys. Rev. D 95(7), 075001 (2017). arXiv:1612.03110 [hep-ph]

    Article  ADS  Google Scholar 

  63. Han, J., Wang, R., Wang, W., Wei, X.N.: Neutrino mass matrices with one texture equality and one vanishing neutrino mass. Phys. Rev. D 96(7), 075043 (2017). arXiv:1705.05725 [hep-ph]

    Article  ADS  Google Scholar 

  64. Zhou, X.Y., He, J.H.: Weighing neutrinos in \(f(R)\) gravity in light of BICEP2. Commun. Theor. Phys. 62, 102 (2014). [arXiv:1406.6822 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  65. Huo, Y., Li, T., Liao, Y., Nanopoulos, D.V., Qi, Y.: Constraints on neutrino velocities revisited. Phys. Rev. D 85, 034022 (2012). arXiv:1112.0264 [hep-ph]

    Article  ADS  Google Scholar 

  66. Diaz Rivero, A., Miranda, V., Dvorkin, C.: Observable predictions for massive-neutrino cosmologies with model-independent dark energy. Phys. Rev. D 100(6), 063504 (2019). arXiv:1903.03125 [astro-ph.CO]

    Article  ADS  Google Scholar 

  67. Yang, W., Di Valentino, E., Mena, O., Pan, S., Nunes, R.C.: Phys. Rev. D 101, 083509 (2020)

    Article  ADS  Google Scholar 

  68. Guo, R.Y., Li, Y.H., Zhang, J.F., Zhang, X.: Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach. JCAP 1705, 040 (2017). arXiv:1702.04189 [astro-ph.CO]

    Article  ADS  Google Scholar 

  69. Feng, L., Li, H.L., Zhang, J.F., Zhang, X.: Exploring neutrino mass and mass hierarchy in interacting dark energy models. Sci. China Phys. Mech. Astron. 63(2), 220401 (2020). arXiv:1903.08848 [astro-ph.CO]

    Article  ADS  Google Scholar 

  70. Amendola, L.: Coupled quintessence. Phys. Rev. D 62, 043511 (2000). arXiv:astro-ph/9908023

    Article  ADS  Google Scholar 

  71. Amendola, L., Tocchini-Valentini, D.: Baryon bias and structure formation in an accelerating universe. Phys. Rev. D 66, 043528 (2002). arXiv:astro-ph/0111535

    Article  ADS  Google Scholar 

  72. Comelli, D., Pietroni, M., Riotto, A.: Dark energy and dark matter. Phys. Lett. B 571, 115 (2003). arXiv:hep-ph/0302080

    Article  ADS  MathSciNet  Google Scholar 

  73. Cai, R.G., Wang, A.: Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem. JCAP 0503, 002 (2005). arXiv:hep-th/0411025

    Article  ADS  Google Scholar 

  74. Zhang, X.: Coupled quintessence in a power-law case and the cosmic coincidence problem. Mod. Phys. Lett. A 20, 2575 (2005). arXiv:astro-ph/0503072

    Article  ADS  Google Scholar 

  75. Zimdahl, W.: Interacting dark energy and cosmological equations of state. Int. J. Mod. Phys. D 14, 2319 (2005). arXiv:gr-qc/0505056

    Article  ADS  MATH  Google Scholar 

  76. Zhang, X., Wu, F.Q., Zhang, J.: A New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter. JCAP 0601, 003 (2006). arXiv:astro-ph/0411221

    Article  ADS  Google Scholar 

  77. Wang, B., Zang, J., Lin, C.Y., Abdalla, E., Micheletti, S.: Interacting dark energy and dark matter: observational constraints from cosmological parameters. Nucl. Phys. B 778, 69 (2007). arXiv:astro-ph/0607126

    Article  ADS  Google Scholar 

  78. Guo, Z.K., Ohta, N., Tsujikawa, S.: Probing the coupling between dark components of the universe. Phys. Rev. D 76, 023508 (2007). arXiv:astro-ph/0702015 [ASTRO-PH]

    Article  ADS  Google Scholar 

  79. Bertolami, O., Gil Pedro, F., Le Delliou, M.: Dark energy-dark matter interaction and the violation of the equivalence principle from the Abell Cluster A586. Phys. Lett. B 654, 165 (2007). arXiv:astro-ph/0703462 [ASTRO-PH]

    Article  ADS  Google Scholar 

  80. Zhang, J., Liu, H., Zhang, X.: Statefinder diagnosis for the interacting model of holographic dark energy. Phys. Lett. B 659, 26 (2008). arXiv:0705.4145 [astro-ph]

    Article  ADS  Google Scholar 

  81. Boehmer, C.G., Caldera-Cabral, G., Lazkoz, R., Maartens, R.: Dynamics of dark energy with a coupling to dark matter. Phys. Rev. D 78, 023505 (2008). arXiv:0801.1565 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  82. Valiviita, J., Majerotto, E., Maartens, R.: Instability in interacting dark energy and dark matter fluids. JCAP 0807, 020 (2008). arXiv:0804.0232 [astro-ph]

    Article  ADS  Google Scholar 

  83. He, J.H., Wang, B.: Effects of the interaction between dark energy and dark matter on cosmological parameters. JCAP 0806, 010 (2008). arXiv:0801.4233 [astro-ph]

    Article  ADS  Google Scholar 

  84. He, J.H., Wang, B., Jing, Y.P.: Effects of dark sectors’ mutual interaction on the growth of structures. JCAP 0907, 030 (2009). arXiv:0902.0660 [gr-qc]

    Article  ADS  Google Scholar 

  85. He, J.H., Wang, B., Zhang, P.: The Imprint of the interaction between dark sectors in large scale cosmic microwave background anisotropies. Phys. Rev. D 80, 063530 (2009). arXiv:0906.0677 [gr-qc]

    Article  ADS  Google Scholar 

  86. Koyama, K., Maartens, R., Song, Y.S.: Velocities as a probe of dark sector interactions. JCAP 0910, 017 (2009). arXiv:0907.2126 [astro-ph.CO]

    Article  ADS  Google Scholar 

  87. Xia, J.Q.: Constraint on coupled dark energy models from observations. Phys. Rev. D 80, 103514 (2009). arXiv:0911.4820 [astro-ph.CO]

    Article  ADS  Google Scholar 

  88. Li, M., Li, X.D., Wang, S., Wang, Y., Zhang, X.: Probing interaction and spatial curvature in the holographic dark energy model. JCAP 0912, 014 (2009). arXiv:0910.3855 [astro-ph.CO]

    Article  ADS  Google Scholar 

  89. Zhang, L., Cui, J., Zhang, J., Zhang, X.: Interacting model of new agegraphic dark energy: cosmological evolution and statefinder diagnostic. Int. J. Mod. Phys. D 19, 21 (2010). arXiv:0911.2838 [astro-ph.CO]

    Article  ADS  MATH  Google Scholar 

  90. Wei, H.: Cosmological constraints on the sign-changeable interactions. Commun. Theor. Phys. 56, 972 (2011). arXiv:1010.1074 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  91. Li, Y., Ma, J., Cui, J., Wang, Z., Zhang, X.: Interacting model of new agegraphic dark energy: observational constraints and age problem. Sci. China Phys. Mech. Astron. 54, 1367 (2011). arXiv:1011.6122 [astro-ph.CO]

    Article  ADS  Google Scholar 

  92. He, J.H., Wang, B., Abdalla, E.: Testing the interaction between dark energy and dark matter via latest observations. Phys. Rev. D 83, 063515 (2011). arXiv:1012.3904 [astro-ph.CO]

    Article  ADS  Google Scholar 

  93. Li, Y.H., Zhang, X.: Running coupling: does the coupling between dark energy and dark matter change sign during the cosmological evolution? Eur. Phys. J. C 71, 1700 (2011). arXiv:1103.3185 [astro-ph.CO]

    Article  ADS  Google Scholar 

  94. Fu, T.F., Zhang, J.F., Chen, J.Q., Zhang, X.: Holographic Ricci dark energy: interacting model and cosmological constraints. Eur. Phys. J. C 72, 1932 (2012). arXiv:1112.2350 [astro-ph.CO]

    Article  ADS  Google Scholar 

  95. Zhang, Z., Li, S., Li, X.D., Zhang, X., Li, M.: Revisit of the interaction between holographic dark energy and dark matter. JCAP 1206, 009 (2012). arXiv:1204.6135 [astro-ph.CO]

    Article  ADS  Google Scholar 

  96. Zhang, J., Zhao, L., Zhang, X.: Revisiting the interacting model of new agegraphic dark energy. Sci. China Phys. Mech. Astron. 57, 387 (2014). arXiv:1306.1289 [astro-ph.CO]

    Article  ADS  Google Scholar 

  97. Li, Y.H., Zhang, X.: Large-scale stable interacting dark energy model: cosmological perturbations and observational constraints. Phys. Rev. D 89(8), 083009 (2014). arXiv:1312.6328 [astro-ph.CO]

    Article  ADS  Google Scholar 

  98. Geng, J.J., Li, Y.H., Zhang, J.F., Zhang, X.: Redshift drift exploration for interacting dark energy. Eur. Phys. J. C 75(8), 356 (2015). arXiv:1501.03874 [astro-ph.CO]

    Article  ADS  Google Scholar 

  99. Cui, J.L., Yin, L., Wang, L.F., Li, Y.H., Zhang, X.: A closer look at interacting dark energy with statefinder hierarchy and growth rate of structure. JCAP 1509, 024 (2015). arXiv:1503.08948 [astro-ph.CO]

    Article  ADS  Google Scholar 

  100. Murgia, R., Gariazzo, S., Fornengo, N.: Constraints on the coupling between dark energy and dark matter from CMB data. JCAP 1604, 014 (2016). arXiv:1602.01765 [astro-ph.CO]

    Article  ADS  Google Scholar 

  101. Wang, B., Abdalla, E., Atrio-Barandela, F., Pavon, D.: Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures. Rep. Prog. Phys. 79(9), 096901 (2016). arXiv:1603.08299 [astro-ph.CO]

    Article  ADS  Google Scholar 

  102. Pourtsidou, A., Tram, T.: Reconciling CMB and structure growth measurements with dark energy interactions. Phys. Rev. D 94(4), 043518 (2016). arXiv:1604.04222 [astro-ph.CO]

    Article  ADS  Google Scholar 

  103. Costa, A.A., Xu, X.D., Wang, B., Abdalla, E.: Constraints on interacting dark energy models from Planck 2015 and redshift-space distortion data. JCAP 1701, 028 (2017). arXiv:1605.04138 [astro-ph.CO]

    Article  ADS  Google Scholar 

  104. Wetterich, C.: Phys. Lett. B 655, 201 (2007). arXiv:0706.4427 [hep-ph]

    Article  ADS  Google Scholar 

  105. Amendola, L., Baldi, M., Wetterich, C.: Phys. Rev. D 78, 023015 (2008). arXiv:0706.3064 [astro-ph]

    Article  ADS  Google Scholar 

  106. Feng, L., Zhang, X.: Revisit of the interacting holographic dark energy model after Planck 2015. JCAP 1608, 072 (2016). arXiv:1607.05567 [astro-ph.CO]

    Article  ADS  Google Scholar 

  107. Xia, D.M., Wang, S.: Constraining interacting dark energy models with latest cosmological observations. Mon. Not. R. Astron. Soc. 463(1), 952 (2016). arXiv:1608.04545 [astro-ph.CO]

    Article  ADS  Google Scholar 

  108. van de Bruck, C., Mifsud, J., Morrice, J.: Testing coupled dark energy models with their cosmological background evolution. Phys. Rev. D 95(4), 043513 (2017). arXiv:1609.09855 [astro-ph.CO]

    Article  ADS  Google Scholar 

  109. Kumar, S., Nunes, R.C.: Echo of interactions in the dark sector. Phys. Rev. D 96(10), 103511 (2017). arXiv:1702.02143 [astro-ph.CO]

    Article  ADS  Google Scholar 

  110. ’t Hooft, G.: Dimensional reduction in quantum gravity. Salamfest 1993: 0284-296. arXiv:gr-qc/9310026

  111. Susskind, L.: The world as a hologram. arXiv:hep-th/9409089

  112. Bousso, R.: The holographic principle. arXiv:hep-th/0203101

  113. Fischler, W., Susskind, L.: Holography and cosmology. arXiv:hep-th/9806039

  114. Horava, P., Minic, D.: Probable values of the cosmological constant in a holographic theory. arXiv:hep-th/0001145

  115. Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Effective field theory, black holes, and the cosmological constant. arXiv:hep-th/9803132

  116. Li, M.: A model of holographic dark energy. arXiv:hep-th/0403127

  117. Wang, S., Wang, Y., Li, M.: Holographic dark energy. arXiv:1612.00345 [astro-ph.CO]

  118. Barrow, J.D.: arXiv:2004.09444 [gr-qc]

  119. Kaul, R.K., Majumdar, P.: Logarithmic correction to the Bekenstein–Hawking entropy, arXiv:gr-qc/0002040

  120. Carlip, S.: Logarithmic corrections to black hole entropy from the Cardy formula. arXiv:gr-qc/0005017

  121. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. Wilk, G., Wlodarczyk, Z.: On the interpretation of nonextensive parameter q in Tsallis statistics and Levy. Phys. Rev. Lett. 84, 2770 (2000). arXiv:hep-ph/9908459

    Article  ADS  Google Scholar 

  123. Tsallis, C., Cirto, L.J.L.: Black hole thermodynamical entropy. arXiv:1202.2154 [cond-mat.stat-mech]

  124. Saridakis, E.N.: Barrow holographic dark energy. arXiv:2005.04115 [gr-qc]

  125. Pradhan, A., Dixit, A., Bhardwaj, V.K.: Barrow HDE model for statefinder diagnostic in FLRW universe. Int. J. Mod. Phys. A 36, 2150030 (2021). arXiv:2101.00176 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  126. Srivastava, S., Sharma, U.K.: Barrow holographic dark energy with Hubble horizon as IR cutoff. arXiv:2010.09439 [gr-qc]

  127. Bhardwaj, V.K., Dixit, A., Pradhan, A.: Statefinder hierarchy model for the Barrow holographic dark energy. arXiv:2102.09946 [gr-qc]

  128. Dixit, A., Bharadwaj, V.K., Pradhan, A.: Barrow HDE model for statefinder diagnostic in non-flat FRW universe. arXiv:2103.08339 [gr-qc]

  129. Nojiri, S., et al.: Phys. Lett. B 831, 137189 (2022)

    Article  Google Scholar 

  130. Hsu, S.D.H.: Phys. Lett. B 594, 13 (2004)

    Article  ADS  Google Scholar 

  131. Li, M.: Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  132. Cataldo, M., Cruz, N.: Eur. Phys. J. C 78, 50 (2018)

    Article  ADS  Google Scholar 

  133. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. AJ 116, 1009 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  134. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of and from 42 high-redshift supernovae. ApJ 517, 565 (1999). arXiv:astroph/9812133

    Article  ADS  MATH  Google Scholar 

  135. Scolnic, D.M., et al.: The complete light-curve sample of spectroscopically confirmed type Ia supernovae from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. ApJ 859, 101 (2018). arXiv:1710.00845

    Article  ADS  Google Scholar 

  136. Amanullah, R., et al.: Astrophys. J. 716, 712 (2010). arXiv:1004.1711 [astro-ph.CO]

    Article  ADS  Google Scholar 

  137. Hai, Yu., Ratra, B., Wang, F.-Y.: ApJ 856, 3 (2018)

    Article  ADS  Google Scholar 

  138. Mangano, G., Miele, G., Pastor, S., Pinto, T., Pisanti, O., Serpico, P.D.: MNRAS 446, 2205 (2005)

    Google Scholar 

  139. Komatsu, E., et al.: ApJS 192, 18 (2011)

    Article  ADS  Google Scholar 

  140. Aghanim, N., et al.: [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [astro-ph.CO]

  141. Zhao, M.-M., He, D.-Z., Zhang, J.-F., Zhang, X.: arXiv:1703.08456

  142. Farooq, O., et al.: APJ. arXiv:1607.03537

  143. Asvesta, K., et al.: Observational constraints on the deceleration parameter in a tilted universe. arXiv:2202.00962v2

  144. Mukherjee, P., Banerjee, N.: Revisiting a non-parametric reconstruction of the deceleration parameter from combined background and the growth rate data. Phys. Dark Universe. 36, 100998 (2022). arXiv:2007.15941v2

    Article  Google Scholar 

  145. Xia, J.-Q., et al.: PRD cosmography beyond standard candles and rulers. arXiv:1103.0373

  146. Salehi, A., et al.: Eur. Phys. J. C 78, 495 (2018)

    Article  ADS  Google Scholar 

  147. Nojiri, S., Odintsov, S.D., Paul, T.: Phys. Lett. B 825, 136844 (2022)

    Article  Google Scholar 

  148. Colgáin, E.Ó., et al.: A critique of holographic dark energy. arXiv:2102.09816v4

  149. Nojiri, S., Odintsov, S.D., Saridakis, E.N.: Holographic inflation. Phys. Lerr. B. [arXiv:1904.1345v2]

  150. Nojiri, S., et al.: Modified cosmology from extended entropy with varying exponent. Eur. Phys. J. C. arXiv:1903.03098v1

  151. Nojiri, S., et al.: Early and late universe holographic cosmology from a new generalized entropy. PLB 137189 (2022). arXiv:2205.08876

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Salehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, A., Pourali, M. & Abedini, Y. Search for neutrino masses in the Barrow holographic dark energy cosmology with Hubble horizon as IR cutoff. Gen Relativ Gravit 55, 57 (2023). https://doi.org/10.1007/s10714-023-03104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03104-9

Keywords

Navigation