Skip to main content
Log in

The noncommutative quantum Hall effect with anomalous magnetic moment in three different relativistic scenarios

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the present paper, we investigate the bound-state solutions of the noncommutative quantum Hall effect with anomalous magnetic moment in three different relativistic scenarios, namely: the Minkowski spacetime (inertial flat case), the spinning cosmic string (CS) spacetime (inertial curved case), and the spinning CS spacetime with noninertial effects (noninertial curved case). In particular, in the first two scenarios, we have an inertial frame, while in the third, we have a rotating frame. With respect to bound-state solutions, we focus primarily on eigenfunctions (Dirac spinor and wave function) and on energy eigenvalues (Landau levels), where we use the flat and curved Dirac equation in polar coordinates to reach such solutions. However, unlike the literature, here we consider a CS with a non-null angular momentum and also the NC of the positions, and therefore, we seek a more general description for the QHE. Once the solutions are obtained, we discuss the influence of all parameters and physical quantities on relativistic energy levels. Finally, we analyze the nonrelativistic limit, and we also compared our problem with other works, where we verified that our results generalize some particular cases of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: There is no data because this is a theoretical work based on calculations to describe the bound-state solutions of the NCQHE with AMM in three different relativistic scenarios, namely: the Minkowski spacetime (inertial flat case), the spinning CS spacetime (inertial curved case), and the spinning CS spacetime with noninertial effects (noninertial curved case).]

References

  1. Klitzing, K.V., Dorda, G., Pepper, M.: Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  2. Kane, C.L., Mele, E.J.: Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  3. Novoselov, K.S., et al.: Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  4. Bernevig, B.A., Hughes, T.L., Zhang, S.C.: Science 314, 1757–1761 (2006)

    Article  ADS  Google Scholar 

  5. Kato, Y.K., Myers, R.C., Gossard, A.C., Awschalom, D.D.: Science 306, 1910–1913 (2004)

    Article  ADS  Google Scholar 

  6. Yoshioka, D.: The Quantum Hall Effect. Springer, Berlin (1992)

    MATH  Google Scholar 

  7. Das, S., Mann, R.B.: Phys. Lett. B 704, 596 (2011)

    Article  ADS  Google Scholar 

  8. Dayi, O.F., Jellal, A.: J. Math. Phys. 43, 4592 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dulat, S., Li, K.: Eur. Phys. J. C 60, 163 (2009)

    Article  ADS  Google Scholar 

  10. Schakel, A.M.: Phys. Rev. D 43, 1428 (1991)

    Article  ADS  Google Scholar 

  11. Haldane, F.D.M.: Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  12. Lamata, L., et al.: New J. Phys. 13, 095003 (2011)

    Article  ADS  Google Scholar 

  13. Beneventano, C.G., Santangelo, E.M.: J. Phys. A Math. Gen. 39, 7457 (2006)

    Article  ADS  Google Scholar 

  14. Laughlin, R.B.: Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  15. Gusynin, P., Sharapov, S.G.: Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  Google Scholar 

  16. Zhang, S.C., Hansson, T.H., Kivelson, S.: Phys. Rev. Lett. 62, 82 (1989)

    Article  ADS  Google Scholar 

  17. Goldman, N., et al.: Phys. Rev. Lett. 103, 035301 (2009)

    Article  ADS  Google Scholar 

  18. Tanaka, T., et al.: Phys. Rev. B 77, 165117 (2008)

    Article  ADS  Google Scholar 

  19. Wu, C., Wu, S.F.: J. High Energy Phys. 2015, 120 (2015)

    Article  Google Scholar 

  20. Zhang, S.C.: Int. J. Mod. Phys. B 6, 25–58 (1992)

    Article  ADS  Google Scholar 

  21. Fabinger, M.: J. High Energy Phys. 2002, 037 (2002)

    Article  MathSciNet  Google Scholar 

  22. Jeckelmann, B., Jeanneret, B.: Rep. Prog. Phys. 64, 1603 (2001)

    Article  ADS  Google Scholar 

  23. Tran, D.T., Cooper, N.R., Goldman, N.: Phys. Rev. A 97, 061602 (2018)

    Article  ADS  Google Scholar 

  24. Thakurathi, M., Burkov, A.A.: Phys. Rev. B 101, 235168 (2020)

    Article  ADS  Google Scholar 

  25. Yoshida, T., Kudo, K., Hatsugai, Y.: Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  26. Zou, J.Y., et al.: Half-Quantized Hall Effect and Power Law Decay of Edge Current Distribution. arXiv:2202.08493 (2022)

  27. Kaplan, D.B., Sen, S.: Phys. Rev. Lett. 124, 131601 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Szabo, R.J.: Phys. Rep. 378, 207 (2003). arXiv:hep-th/0109162v4

    Article  ADS  MathSciNet  Google Scholar 

  29. Douglas, M.R., Nekrasov, N.A.: Rev. Mod. Phys. 73, 977 (2001)

    Article  ADS  Google Scholar 

  30. Gomis, J., Mehen, T.: Nucl. Phys. B 591, 265 (2000)

    Article  ADS  Google Scholar 

  31. Seiberg, N., Witten, E.: J. High Energy Phys. 09, 032 (1999)

    Article  ADS  Google Scholar 

  32. Gamboa, J., Loewe, M., Rojas, J.C.: Phys. Rev. D 64, 067901 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  33. Acatrinei, C.: J. High Energy Phys. 2001, 007 (2001)

    Article  MathSciNet  Google Scholar 

  34. Bertolami, O., Leal, P.: Phys. Lett. B 750, 6 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Bertolami, O., Rosa, J.G., de Aragão, C.M.L., Castorina, P., Zappala, D.: Phys. Rev. D 72, 025010 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  36. Snyder, H.S.: Phys. Rev. 71, 38 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  37. Majid, S.: Lect. Notes Phys. 541, 227 (2000)

    Article  ADS  Google Scholar 

  38. Abel, S.A., et al.: J. High Energy Phys. 09, 074 (2006)

    Article  ADS  Google Scholar 

  39. Pikovski, I., et al.: Nat. Phys. 8, 393 (2012)

    Article  Google Scholar 

  40. Moffat, J.W.: Phys. Lett. B 491, 345 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  41. Hinchliffe, I., Kersting, N., Ma, Y.L.: Int. J. Mod. Phys. A 19, 179 (2004)

    Article  ADS  Google Scholar 

  42. Schupp, P., et al.: Eur. Phys. J. C 36, 405 (2004)

    Article  ADS  Google Scholar 

  43. Melic, B., et al.: Eur. Phys. J. C 42, 483 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  44. Buric, M., et al.: Phys. Rev. D 75, 097701 (2007)

    Article  ADS  Google Scholar 

  45. Carlson, C.E., Carone, C.D., Lebed, R.F.: Phys. Lett. B 518, 201 (2001)

    Article  ADS  Google Scholar 

  46. Riad, I.F., Sheikh-Jabbari, M.M.: J. High Energy Phys. 2000, 045 (2000)

    Article  Google Scholar 

  47. Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 632, 547 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. Garcia-Compean, H., Obregon, O., Ramirez, C.: Phys. Rev. Lett. 88, 161301 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  49. Nascimento, J.P.G., Aguiar, V., Guedes, I.: Phys. A 477, 65 (2017)

    Article  MathSciNet  Google Scholar 

  50. Bastos, C., Bertolami, O., Dias, N.C., Prata, J.N.: Int. J. Mod. Phys. A 28, 1350064 (2013)

    Article  ADS  Google Scholar 

  51. Greiner, W., Reinhardt, J.: Quantum Electrodynamics, vol. 4. Springer, Berlin (2009)

    MATH  Google Scholar 

  52. Geiger, K., Reinhardt, J., Muller, B., Greiner, W.: Zeitschr. Phys. A At. Nucl. 329, 77 (1988)

    Article  ADS  Google Scholar 

  53. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations, vol. 3. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  54. Van Dyck Jr, R.S., Schwinberg, P.B., Dehmelt, H.G.: Phys. Rev. Lett. 59, 26 (1987)

    Article  ADS  Google Scholar 

  55. Moroi, T.: Phys. Rev. D 53, 6565 (1996)

    Article  ADS  Google Scholar 

  56. Stadnik, Y.V., Roberts, B.M., Flambaum, V.V.: Phys. Rev. D 90, 045035 (2014)

    Article  ADS  Google Scholar 

  57. Barger, V., Keung, W.Y., Marfatia, D., Tseng, P.Y.: Phys. Lett. B 717, 219 (2012)

    Article  ADS  Google Scholar 

  58. Blum, T., et al.: Phys. Rev. Lett. 114, 012001 (2015)

    Article  ADS  Google Scholar 

  59. Blum, T., et al.: Phys. Rev. Lett. 116, 232002 (2016)

    Article  ADS  Google Scholar 

  60. Mirza, B., Zarei, M.: Eur. Phys. J. C 32, 583 (2004)

    Article  ADS  Google Scholar 

  61. Hagen, C.R.: Phys. Rev. Lett. 64, 2347 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  62. Passos, E., Ribeiro, L.R., Furtado, C., Nascimento, J.R.: Phys. Rev. A 76, 012113 (2007)

    Article  ADS  Google Scholar 

  63. Ribeiro, L.R., Passos, E., Furtado, C., Nascimento, J.R.: Eur. Phys. J. C 56, 597 (2008)

    Article  ADS  Google Scholar 

  64. Bruce, S.A., Diaz-Valdes, J.F.: Eur. Phys. J. Plus 135, 177 (2020)

    Article  Google Scholar 

  65. Bruce, S.A., Diaz-Valdes, J.F.: Int. J. Mod. Phys. E 29, 2050010 (2020)

    Article  ADS  Google Scholar 

  66. Dvornikov, M.: Phys. Rev. D 99, 116021 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  67. Oliveira, R.R.S., Araújo Filho, A.A.: Eur. Phys. J. Plus 135, 99 (2020)

    Article  Google Scholar 

  68. Barnett, S.J.: Phys. Rev. 6, 239 (1915)

    Article  ADS  Google Scholar 

  69. Hendricks, J.B., King, C.A., Rorschach, H.E.: J. Low Temp. Phys. 4, 209 (1971)

    Article  ADS  Google Scholar 

  70. Ono, M., et al.: Phys. Rev. B 92, 174424 (2015)

    Article  ADS  Google Scholar 

  71. Arabgol, M., Sleator, T.: Phys. Rev. Lett. 122, 177202 (2019)

    Article  ADS  Google Scholar 

  72. Cooper, N.R., Wilkin, N.K., Gunn, J.M.F.: Phys. Rev. Lett. 87, 120405 (2001)

    Article  ADS  Google Scholar 

  73. Matsuo, M., Ieda, J.I., Saitoh, E., Maekawa, S.: Phys. Rev. B 84, 104410 (2011)

    Article  ADS  Google Scholar 

  74. Matsuo, M., Ieda, J.I., Saitoh, E., Maekawa, S.: Phys. Rev. Lett. 106, 076601 (2011)

    Article  ADS  Google Scholar 

  75. Cooper, N.R.: Adv. Phys. 57, 539 (2008)

    Article  ADS  Google Scholar 

  76. Shen, J.Q., He, S., Zhuang, F.: Eur. Phys. J. D 33, 35 (2005)

    Article  ADS  Google Scholar 

  77. Fischer, U.R., et al.: Phys. Rev. B 64, 214509 (2001)

    Article  ADS  Google Scholar 

  78. Pereira, L.F.C., Cunha, M.M., Silva, E.O.: Influence of rotation on the electronic states, magnetization and persistent current in 1d quantum ring. arXiv:1912.02790 (2019)

  79. Filgueiras, C., Brandão, J., Moraes, F.: Europhys. Lett. 110, 27003 (2015)

    Article  ADS  Google Scholar 

  80. Brandão, J.E., Moraes, F., Cunha, M.M., Lima, J.R., Filgueiras, C.: Results Phys. 5, 55 (2015)

    Article  ADS  Google Scholar 

  81. Dvornikov, M.: J. High Energy Phys. 2014, 53 (2014)

    Article  Google Scholar 

  82. Lambiase, G.: Eur. Phys. J. C 19, 553 (2001)

    Article  ADS  Google Scholar 

  83. Santos, L.C.N., Barros, C.C.: Eur. Phys. J. C 77, 186 (2017)

    Article  ADS  Google Scholar 

  84. Hehl, F.W., Ni, W.T.: Phys. Rev. D 42, 2045 (1990)

    Article  ADS  Google Scholar 

  85. Ebihara, S., Fukushima, K., Mameda, K.: Phys. Lett. B 764, 94 (2017)

    Article  ADS  Google Scholar 

  86. Chernodub, M.N., Gongyo, S.: J. High Energy Phys. 2017, 1 (2017)

    Article  Google Scholar 

  87. Chernodub, M.N., Gongyo, S.: Phys. Rev. D 95, 096006 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  88. Huang, Z., Situ, H.: Quantum Inf. Process. 17, 95 (2018)

    Article  ADS  Google Scholar 

  89. Wang, J., Jing, J.: Phys. Rev. A 82, 032324 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  90. Yamamoto, A., Hirono, Y.: Phys. Rev. Lett. 111, 081601 (2013)

    Article  ADS  Google Scholar 

  91. Koepf, W., Ring, P.: Nucl. Phys. A 493, 61 (1989)

    Article  ADS  Google Scholar 

  92. Jiang, Y., Liao, J.: Phys. Rev. Lett. 117, 192302 (2016)

    Article  ADS  Google Scholar 

  93. Cunha, M.M., et al.: Eur. Phys. J. B 88, 1 (2015)

    Article  Google Scholar 

  94. Lima, J.R., Morais, F.: Eur. Phys. J. B 88, 1 (2015)

    Article  ADS  Google Scholar 

  95. Rizzi, G., Ruggiero, M.L. (eds.): Relativity in Rotating Frames. Relativistic Physics in Rotating Reference Frames. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  96. Kibble, T.W.: J. Phys. A 9, 1387 (1976)

    Article  ADS  Google Scholar 

  97. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  98. de Mello, E.R.B.: J. High Energy Phys. 2004, 016 (2004)

    Article  Google Scholar 

  99. Ade, P.A., et al.: Astron. Astrophys. 571, A25 (2014). arXiv:1303.5085v1 [astro-ph.CO]

    Article  Google Scholar 

  100. Andrade, F.M., Silva, E.O.: Eur. Phys. J. C 74, 3187 (2014)

    Article  ADS  Google Scholar 

  101. Cunha, M.S., Muniz, C.R., Christiansen, H.R., Bezerra, V.B.: Eur. Phys. J. C 76, 512 (2016)

    Article  ADS  Google Scholar 

  102. Cunha, M.M., Dias, H.S., Silva, E.O.: Phys. Rev. D 102, 105020 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  103. Muniz, C.R., Bezerra, V.B., Cunha, M.S.: Ann. Phys. 350, 105 (2014)

    Article  ADS  Google Scholar 

  104. Guvendi, A., Sucu, Y.: Phys. Lett. B 811, 135960 (2020)

    Article  MathSciNet  Google Scholar 

  105. Ahmed, F.: Eur. Phys. J. C 80, 1 (2020)

    Article  ADS  Google Scholar 

  106. Mazur, P.O.: Phys. Rev. Lett. 57, 929 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  107. Linet, B.: Phys. Rev. D 33, 1833 (1986)

    Article  ADS  Google Scholar 

  108. Audretsch, J., Economou, A.: Phys. Rev. D 44, 3774 (1991)

    Article  ADS  Google Scholar 

  109. Vilenkin, A.: Phys. Lett. B 107, 47 (1981)

    Article  ADS  Google Scholar 

  110. Vachaspati, T., Vilenkin, A.: Phys. Rev. D 31, 3052 (1985)

    Article  ADS  Google Scholar 

  111. Frolov, V.P., Serebriany, E.: Phys. Rev. D 35, 3779 (1987)

    Article  ADS  Google Scholar 

  112. Sazhin, M.V., et al.: Open Astron. 3, (2010)

  113. Gott, J.R.G., III.: Phys. Rev. Lett. 66, 1126 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  114. Harari, D., Polychronakos, A.P.: Phys. Rev. D 38, 3320 (1988)

    Article  ADS  Google Scholar 

  115. Davis, R., Shellard, E.P.S.: Nucl. Phys. B 323, 209 (1989)

    Article  ADS  Google Scholar 

  116. Ruutu, V., et al.: Nature 382, 334 (1996)

    Article  ADS  Google Scholar 

  117. Cui, Y., et al.: J. High Energy Phys. 2019, 1 (2019)

    Article  Google Scholar 

  118. Abbott, B.P., et al.: Phys. Rev. D 97, 102002 (2018)

    Article  ADS  Google Scholar 

  119. Auclair, P., et al.: J. Cosmol. Astropart. Phys. 2020, 034 (2020)

    Article  MathSciNet  Google Scholar 

  120. Blanco-Pillado, J.J., Olum, K.D., Siemens, X.: Phys. Lett. B 778, 392 (2018)

    Article  ADS  Google Scholar 

  121. Buchmuller, W., Domcke, V., Schmitz, K.: Phys. Lett. B 811, 135914 (2020)

    Article  MathSciNet  Google Scholar 

  122. Blasi, S., Brdar, V., Schmitz, K.: Phys. Rev. Lett. 126, 041305 (2021)

    Article  ADS  Google Scholar 

  123. Ellis, J., Lewicki, M.: Phys. Rev. Lett. 126, 041304 (2021)

    Article  ADS  Google Scholar 

  124. Kleinert, H.: Gauge Fields in Condensed Matter, vol. 2. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  125. Katanaev, M., Volovich, I.: Ann. Phys. (N. Y.) 216, 1 (1992)

    Article  ADS  Google Scholar 

  126. Kleman, M., Fridel, J.: Rev. Mod. Phys. 80, 61 (2008)

    Article  ADS  Google Scholar 

  127. Kolesnikova, A.L., et al.: Rev. Adv. Mater. Sci. 52, 91 (2017)

    Google Scholar 

  128. Cortijo, A., Vozmediano, M.A.: Europhys. Lett. 77, 47002 (2007)

    Article  ADS  Google Scholar 

  129. Zurek, W.H.: Phys. Rep. 276, 177 (1996)

    Article  ADS  Google Scholar 

  130. Hendry, P., et al.: Nature 368, 315 (1994)

    Article  ADS  Google Scholar 

  131. Moraes, F.: Braz. J. Phys. 30, 304 (2000)

    Article  ADS  Google Scholar 

  132. Oliveira, R.R.S.: Gen. Rel. Grav. 52, 1 (2020)

    Article  Google Scholar 

  133. Santos, L.C.N., Barros, C.C.: Eur. Phys. J. C 78, 13 (2018)

    Article  ADS  Google Scholar 

  134. Zare, S., Hassanabi, H., de Montigny, M.: Gen. Rel. Grav. 52, 25 (2020)

    Article  ADS  Google Scholar 

  135. Oliveira, R.R.S.: Eur. Phys. J. C 79, 725 (2019)

    Article  ADS  Google Scholar 

  136. Oliveira, R.R.S.: Gen. Relativ. Gravit. 51, 120 (2019)

    Article  ADS  Google Scholar 

  137. Castro, L.B.: Eur. Phys. J. C 76, 1 (2016)

    Article  MathSciNet  Google Scholar 

  138. Bakke, K., Furtado, C.: Phys. Rev. D 80, 024033 (2009)

    Article  ADS  Google Scholar 

  139. Rojas, M., et al.: Phys. Lett. A 382, 432 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  140. Mota, H.F., Bakke, K.: Gen. Rel. Grav. 49, 104 (2017)

    Article  ADS  Google Scholar 

  141. Bakke, K., Furtado, C.: Phys. Rev. D 82, 084025 (2010)

    Article  ADS  Google Scholar 

  142. Brandão, J., et al.: Phys. Commun. 1, 035004 (2017)

    Google Scholar 

  143. Cuzinatto, R.R., de Montigny, M., Pompeia, P.J.: Gen. Relativ. Gravit. 51, 107 (2019)

    Article  ADS  Google Scholar 

  144. Cuzinatto, R.R., de Montigny, M., Pompeia, P.J.: Class. Quantum Grav. 39, 31 (2022)

    Google Scholar 

  145. Cuzinatto, R.R., de Montigny, M., Pompeia, P.J.: Class. Quantum Grav. 39, 21 (2022)

    Google Scholar 

  146. Schluter, P., Wietschorke, K.H., Greiner, W.: J. Phys. A 16, 1999 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  147. Villalba, V.M., Maggiolo, A.R.: Eur. Phys. J. B 22, 31 (2001)

    ADS  Google Scholar 

  148. Villalba, V.M., Pino, R.: Mod. Phys. Lett. B 17, 134 (2003)

    Article  Google Scholar 

  149. Katsnelson, M.I.: Mater. Today 10, 20 (2007)

    Article  Google Scholar 

  150. de Lima, A.A., Filgueiras, C.: Eur. Phys. J. B 85, 1 (2012)

    Article  Google Scholar 

  151. Lawrie, I.D.: A Unified Grand Tour of Theoretical Physics, vol. 3. CRC Press, London (2012)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), the Coordenação de Aperfeiç oamento de Pessoal de Nível Superior (CAPES), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. S. Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R.R.S., Alencar, G. & Landim, R.R. The noncommutative quantum Hall effect with anomalous magnetic moment in three different relativistic scenarios. Gen Relativ Gravit 55, 15 (2023). https://doi.org/10.1007/s10714-022-03057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-03057-5

Navigation