Skip to main content
Log in

The averaging problem on the past null cone in inhomogeneous dust cosmologies

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Cosmological models typically neglect the complicated nature of the spacetime mani-fold at small scales in order to hypothesize idealized general relativistic solutions for describing the average dynamics of the Universe. Although these solutions are remarkably successful in accounting for data, they introduce a number of puzzles in cosmology, and their foundational assumptions are therefore important to test. In this paper, we go beyond the usual assumptions in cosmology and propose a formalism for averaging the local general relativistic spacetime on an observer’s past null cone: we formulate average properties of light fronts as they propagate from a cosmological emitter to an observer. The energy-momentum tensor is composed of an irrotational dust source and a cosmological constant—the same components as in the \(\varLambda \)CDM model for late cosmic times—but the metric solution is not a priori constrained to be locally homogeneous or isotropic. This generally makes the large-scale dynamics depart from that of a simple Friedmann–Lemaître–Robertson–Walker solution through ‘backreaction’ effects. Our formalism quantifies such departures through a fully covariant system of area-averaged equations on the light fronts propagating towards an observer, which can be directly applied to analytical and numerical investigations of cosmic observables. For this purpose, we formulate light front averages of observable quantities, including the effective angular diameter distance and the cosmological redshift drift and we also discuss the backreaction effects for these observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Averaging over tensor-valued variables introduces ambiguities in the volume-averaging procedure (see Refs. [26, 29, 54, 58, 127] and references therein).

  2. The same averaging operation might be formulated in the notation of Refs. [70, 76].

  3. We might in principle choose any world line to initialize a past null cone, but we shall often be interested in observers comoving with the matter in the cosmological spacetime.

  4. Another option is to consider level surfaces of constant affine parameter \(\lambda \) of the geodesic null congruence defined from the propagation requirement \(k^{\rho }\partial _{\rho }\lambda = 1\). In order to uniquely define \(\lambda \) as a spacetime function, we must specify initial conditions. We might, for instance, require setting \(\lambda |_\gamma = 0\). From this it follows immediately that \(u^{\rho }\partial _{\rho }\lambda |_\gamma = 0\), and the gradient of \(\lambda \) is thus spacelike in the vicinity of \(\gamma \), and \(\lambda = \text {constant}\)-level surfaces define timelike cylinders in the same vicinity. Far away from the vertex, the use of \(\lambda \) as a meaningful foliation scalar must be carefully re-assessed.

  5. As a result of the fact that \(l^\mu \) does not in general generate a geodesic null congruence, it does not in general satisfy the condition (6). For the same reason, \(l^\mu \) is not necessarily hypersurface-forming. However, it is irrotational through its definition as a linear combination of irrotational vector fields, Eq. (10b), after projection onto the screen space normal to \(k^\mu \) and \(u^\mu \): \(p_{\mu }^{\ \alpha } \; p_{\nu }^{\ \beta } \nabla _{[\alpha } l_{\beta ]} = 0\).

  6. It is a well-known result from calculus of variations in Riemannian geometry that surfaces minimizing the area measure locally have zero trace of the extrinsic curvature scalar of the embedding.

  7. Since causal lines can only leave a past null cone (and not enter), we indeed expect a negative contribution to the overall expansion rate of the screen space from the drift of the screen space boundaries relative to the matter congruence: the screen space is sampling the cross section of fewer fluid elements as the vertex of the past null cone is approached. However, local differential expansion of the dust matter congruence and the spatial fluctuations in the rest mass density \(\varrho \) could potentially compensate this tendency locally.

  8. With Eq. (10a), when acting on scalar-valued variables, the operator identity \(E^{-1}k^{\rho }\partial _{\rho } = u^{\rho }\partial _{\rho }- e^{\rho }\partial _{\rho }\) applies.

  9. In generic cosmological spacetimes the observer area distance for a luminous astrophysical source does not necessarily coincide with the linear size based angular diameter distance for the same source due to potential Weyl curvature induced shearing along the observer’s past null cone of an incoming geodesic null ray bundle. Only in an exact FLRW cosmology do their conceptions become identical as a consequence of the prevailing spatial isotropy, and thus vanishing Weyl curvature; cf. Refs. [149, Eq. (25,27)] and [59, Sec. 4.5.2].

  10. In general, local coordinates preserved along \(k^\mu \) are not preserved along \(u^\mu \), since \(k^{\rho }\partial _{\rho }x^A = 0\) implies that \(k^\alpha \nabla _\alpha (u^{\rho }\partial _{\rho }x^A) = \pounds _{{\textbf {k}}} (u^\rho ) \partial _{\rho }x^A \), where the operator \(\pounds _{{\textbf {k}}}\) is the Lie derivative along the geodesic null rays associated with \(k^\mu \). Thus, if the change of \(u^\mu \) along the geodesic null rays has components tangential to the screen space (which happens generically in spatially inhomogeneous cosmologies), then \(u^{\rho }\partial _{\rho }x^A = 0\) cannot be satisfied globally on the past null cone.

  11. For a discussion of the degeneracy at the null cone of the standard ADM (Arnowitt, Deser and Misner) \(3+1\) slicing formalism [4] and its generalization for lightlike foliations, exemplified for double null foliations, see Refs. [18, 95].

  12. We remark that this backreaction term appears to bear a relationship to the Hawking–Hayward energies as defined in Refs. [85, 86]; see Refs. [10, 152, 153] for recent work.

  13. We still refer to the dust case here; a generalization including fluid pressure with general considerations on lapse and shift can be found in [121].

  14. For an analogous definition of domain boundaries in the \(3+1\) slicing formalism, see Ref. [75].

  15. Any restriction imposed on the volume shear rate of the matter congruence leads to constraints on the Weyl curvature and on the spatial gradient of the expansion rate through the geodesic deviation equation and constraint equations for the relevant congruence [55]. For example, \(n^{\mu } q^\nu {\hat{\sigma }}_{\mu \nu } = 0 \Rightarrow k^\alpha n^\mu q^\beta k^\nu C_{\alpha ( \mu \beta ) \nu } = 0\) in the present set-up. By imposing such restrictions it must be checked whether there exist non-trivial cosmological spacetimes fulfilling such conditions for the volume shear rate.

  16. We omit the normalization of the dimensionfull quantities \(d_A\) and \(d_L\) inside the logarithm; the corresponding equations hold for any choice of normalization.

  17. The Weyl curvature has no influence on the properties of the geodesic null congruence in this case.

  18. See the references therein, also to earlier work on other relativistic perturbation theories, the history of Lagrangian perturbation theory, and e.g. [37] for their application as a closure condition for the \((3+1)\) averaged system.

References

  1. Adamek, J., Clarkson, C., Coates, L., Durrer, R., Kunz, M.: Bias and scatter in the Hubble diagram from cosmological large-scale structure. Phys. Rev. D 100, 021301 (2019). arXiv:1812.04336

    Article  ADS  MathSciNet  Google Scholar 

  2. Adamek, J., Daverio, D., Durrer, R., Kunz, M.: General relativity and cosmic structure formation. Nat. Phys. 12, 346 (2016). arXiv:1509.01699

    Article  Google Scholar 

  3. Aghanim, N., et al.: (Planck Collaboration). Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). arXiv:1807.06209

  4. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In Gravitation, edited by L. Witten (Wiley, New York, 1962), 227. Reprinted: Gen. Relativ. Gravit. 40, 1997 (2008). arXiv:gr-qc/0405109

  5. Bagheri, S., Schwarz, D.J.: Light propagation in the averaged universe. J. Cosmol. Astropart. Phys. 10, 073 (2014). arXiv:1404.2185

    Article  ADS  Google Scholar 

  6. Beenakker, W., Venhoek, D.: A structured analysis of Hubble tension. arXiv:2101.01372

  7. Ben-Dayan, I., Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: Backreaction on the luminosity-redshift relation from gauge invariant light-cone averaging. J. Cosmol. Astropart. Phys. 04, 036 (2012). arXiv:1202.1247

    Article  ADS  Google Scholar 

  8. Ben-Dayan, I., Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: Average and dispersion of the luminosity-redshift relation in the concordance model. J. Cosmol. Astropart. Phys. 06, 002 (2013). arXiv:1302.0740

    Article  ADS  Google Scholar 

  9. Ben-Dayan, I., Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: Do stochastic inhomogeneities affect dark-energy precision measurements? Phys. Rev. Lett. 110, 021301 (2013). arXiv:1207.1286

    Article  ADS  Google Scholar 

  10. Bengtsson, I.: The Hawking energy on photon surfaces. Gen. Relativ. Gravit. 52, 52 (2020). arXiv:2001.08491

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bentivegna, E., Bruni, M.: Effects of nonlinear inhomogeneity on the cosmic expansion with numerical relativity. Phys. Rev. Lett. 116, 251302 (2016). arXiv:1511.05124

    Article  ADS  Google Scholar 

  12. Bildhauer, S., Futamase, T.: The cosmic microwave background in a globally inhomogeneous universe. Mon. Not. R. Astron. Soc. 249, 126 (1991)

    Article  ADS  Google Scholar 

  13. Biswas, T., Mansouri, R., Notari, A.: Nonlinear structure formation and apparent acceleration: an investigation. J. Cosmol. Astropart. Phys. 12, 017 (2007). arXiv:astro-ph/0606703

    Article  ADS  Google Scholar 

  14. Bolejko, K.: Volume averaging in the quasispherical Szekeres model. Gen. Relativ. Gravit. 41, 1585 (2009). arXiv:0808.0376

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bolejko, K.: Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant. Phys. Rev. D 97, 103529 (2018). arXiv:1712.02967

    Article  ADS  MathSciNet  Google Scholar 

  16. Bonvin, C., Durrer, R., Gasparini, M.A.: Fluctuations of the luminosity distance. Phys. Rev. D 73, 023523 (2006). arXiv:astro-ph/0511183

    Article  ADS  Google Scholar 

  17. Borzyszkowski, M., Bertacca, D., Porciani, C.: LIGER: mock relativistic light-cones from Newtonian simulations. Mon. Not. R. Astron. Soc. 471, 3899 (2017). arXiv:1703.03407

    Article  ADS  Google Scholar 

  18. Brady, P.R., Droz, S., Israel, W., Morsink, S.M.: Covariant double-null dynamics: 2 + 2-splitting of the Einstein equations. Class. Quantum Gravity 13, 2211 (1996). arXiv:gr-qc/9510040

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Breton, M.A., Rasera, Y., Taruya, A., Lacombe, O., Saga, S.: Imprints of relativistic effects on the asymmetry of the halo cross-correlation function: from linear to non-linear scales. Mon. Not. R. Astron. Soc. 483, 2671 (2019). arXiv:1803.04294

    Article  ADS  Google Scholar 

  20. Brouzakis, N., Tetradis, N., Tzavara, E.: The effect of large-scale inhomogeneities on the luminosity distance. J. Cosmol. Astropart. Phys. 02, 013 (2007). arXiv:astro-ph/0612179

    Article  ADS  Google Scholar 

  21. Bruni, M., Sonego, S.: Observables and gauge invariance in the theory of non-linear spacetime perturbations. Class. Quantum Gravity 16, L29 (1999). arXiv:gr-qc/9906017

    Article  ADS  MATH  Google Scholar 

  22. Brunswic, L., Buchert, T.: Gauss–Bonnet–Chern approach to the averaged Universe. Class. Quantum Gravity 37, 215022 (2020). arXiv:2002.08336

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Buchert, T.: On average properties of inhomogeneous cosmologies. In: 9th JGRG Meeting, Hiroshima 1999, Y. Eriguchi et al. (eds.). J.G.R.G. 9, 306 (2000). arXiv:gr-qc/0001056

  24. Buchert, T.: On average properties of inhomogeneous fluids in general relativity: dust cosmologies. Gen. Relativ. Gravit. 32, 105 (2000). arXiv:gr-qc/9906015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Buchert, T.: On average properties of inhomogeneous fluids in general relativity: perfect fluid cosmologies. Gen. Relativ. Gravit. 33, 1381 (2001). arXiv:gr-qc/0102049

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Buchert, T.: Dark Energy from structure: a status report. Gen. Relativ. Gravit. 40, 467 (2008). arXiv:0707.2153

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Buchert, T.: A cosmic equation of state for the inhomogeneous universe: can a global far-from-equilibrium state explain dark energy? Class. Quantum Gravity 22, L113 (2005). arXiv:gr-qc/0507028

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Buchert, T.: Toward physical cosmology: focus on inhomogeneous geometry and its non-perturbative effects. Class. Quantum Gravity 28, 164007 (2011). arXiv:1103.2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Buchert, T., Carfora, M.: Regional averaging and scaling in relativistic cosmology. Class. Quantum Gravity 19, 6109 (2002). arXiv:gr-qc/0210037

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Buchert, T., Carfora, M.: On the curvature of the present-day Universe. Class. Quantum Gravity 25, 195001 (2008). arXiv:0803.1401

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Buchert, T., Coley, A., Kleinert, H., Roukema, B.F., Wiltshire, D.L.: Observational challenges for the standard FLRW model. Int. J. Mod. Phys. D 25, 1630007 (2016). arXiv:1512.03313

    Article  ADS  MathSciNet  Google Scholar 

  32. Buchert, T., Delgado Gaspar, I., Ostrowski, J.J.: On general-relativistic Lagrangian perturbation theory and its non-perturbative generalization. Universe 8, 583 (2022). arXiv:2209.13417

    Article  ADS  Google Scholar 

  33. Buchert, T., Ehlers, J.: Averaging inhomogeneous Newtonian cosmologies. Astron. Astrophys. 320, 1 (1997). arXiv:astro-ph/9510056

    ADS  Google Scholar 

  34. Buchert, T., Larena, J., Alimi, J.-M.: Correspondence between kinematical backreaction and scalar field cosmologies: the ‘morphon field’. Class. Quantum Gravity 23, 6379 (2006). arXiv:gr-qc/0606020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Buchert, T., Mourier, P., Roy, X.: Cosmological backreaction and its dependence on spacetime foliation. Class. Quantum Gravity 35, 24LT02 (2018). arXiv:1805.10455

    Article  MathSciNet  MATH  Google Scholar 

  36. Buchert, T., Mourier, P., Roy, X.: On average properties of inhomogeneous fluids in general relativity III: general fluid cosmologies. Gen. Relativ. Gravit. 52, 27 (2020). arXiv:1912.04213

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Buchert, T., Nayet, C., Wiegand, A.: Lagrangian theory of structure formation in relativistic cosmology. II. Average properties of a generic evolution model. Phys. Rev. D 87, 123503 (2013). arXiv:1303.6193

    Article  ADS  Google Scholar 

  38. Buchert, T., Räsänen, S.: Backreaction in late-time cosmology. Annu. Rev. Nucl. Part. Sci. 62, 57 (2012). arXiv:1112.5335

    Article  ADS  Google Scholar 

  39. Carfora, M., Familiari, F.: A comparison theorem for cosmological lightcones. Lett. Math. Phys. 111, 53 (2021). arXiv:2101.12698

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Chirinos Isidro, E.G., Barbosa, R.M., Piattella, O.F., Zimdahl, W.: Averaged Lemaître–Tolman–Bondi dynamics. Class. Quantum Gravity 34, 035001 (2017). arXiv:1608.00452

    Article  ADS  MATH  Google Scholar 

  41. Clarkson, C., Umeh, O.: Is backreaction really small within concordance cosmology? Class. Quantum Gravity 28, 164010 (2011). arXiv:1105.1886

    Article  ADS  MATH  Google Scholar 

  42. Clifton, T., Gallagher, C.S., Goldberg, S., Malik, K.A.: Viable gauge choices in cosmologies with nonlinear structures. Phys. Rev. D 101, 063530 (2020). arXiv:2001.00394

    Article  ADS  MathSciNet  Google Scholar 

  43. Delgado Gaspar, I., Buchert, T., Ostrowski, J.J.: Beyond relativistic Lagrangian perturbation theory. I. An exact-solution controlled model for structure formation. Phys. Rev. D (accepted) arXiv:2210.04004

  44. Demianski, M., de Ritis, R., Marino, A.A., Piedipalumbo, E.: Approximate angular diameter distance in a locally inhomogeneous universe with nonzero cosmological constant. Astron. Astrophys. 411, 33 (2003). arXiv:astro-ph/0310830

    Article  ADS  MATH  Google Scholar 

  45. Di Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., Mota, D.F., Riess, A.G., Silk, J.: In the realm of the Hubble tension—a review of solutions. Class. Quantum Gravity 38, 153001 (2021). arXiv:2103.01183

  46. Dyer, C.C., Roeder, R.C.: Observations in locally inhomogeneous cosmological models. Astrophys. J. 189, 167 (1974)

    Article  ADS  Google Scholar 

  47. East, W.E., Wojtak, R., Abel, T.: Comparing fully general relativistic and Newtonian calculations of structure formation. Phys. Rev. D 97, 043509 (2018). arXiv:1711.06681

    Article  ADS  Google Scholar 

  48. East, W.E., Wojtak, R., Pretorius, F.: Einstein–Vlasov calculations of structure formation. Phys. Rev. D 100, 103533 (2019). arXiv:1908.05683

    Article  ADS  MathSciNet  Google Scholar 

  49. Ehlers, J.: Beiträge zur relativistischen Mechanik kontinuierlicher Medien. Akad. Wiss. Lit. Mainz, Abhandl. Math.–Nat. Kl. 11, 793–837 (1961). English translation: Contributions to the relativistic mechanics of continuous media. Gen. Relativ. Gravit. 25, 1225–1266 (1993)

  50. Einstein, A.: Die Feldgleichungen der Gravitation. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 844–847 (1915). English translation: einsteinpapers.press.princeton.edu/vol6-trans/129

  51. Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 142–152 (1917). English translation: Cosmological considerations on the general theory of relativity. In The Principle of Relativity, (London, Methuen, 1923). Reprinted: (Mineola, Dover Publications, 1952), 175–188. einsteinpapers.press.princeton.edu/vol6-trans/433

  52. Ellis, G.F.R.: Dynamics of pressure-free matter in general relativity. J. Math. Phys. 8, 1171–1194 (1967)

    Article  ADS  Google Scholar 

  53. Ellis, G.F.R.: Relativistic cosmology. In: General Relativity and Cosmology, Proceedings of the International School of Physics “Enrico Fermi" (Varenna), Course XLVII, edited by R. K. Sachs (Academic Press, New York, 1971), 104–182. Reprinted: Gen. Relativ. Gravit. 41, 581–660 (2009)

  54. Ellis, G.F.R.: Relativistic cosmology—its nature, aims and problems. In: Bertotti, B., de Felice, F., Pascolini, A. (eds.), General Relativity and Gravitation, pp. 215–288. D. Reidel Publishing Co., Dordrecht (1984)

  55. Ellis, G.F.R.: Shear free solutions in General Relativity Theory. Gen. Relativ. Gravit. 43, 3253 (2011). arXiv:1107.3669

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Ellis, G.F.R., Bassett, B.A.C.C., Dunsby, P.K.S.: Lensing and caustic effects on cosmological distances. Class. Quantum Gravity 15, 2345 (1998). arXiv:gr-qc/9801092

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Ellis, G.F.R., Börner, G., Buchert, T., Ehlers, J., Hogan, C.J., Kirshner, R.P., Press, W.H., Raffelt, G., Thielemann, F.-K., van den Bergh, S.: What do we know about global properties of the Universe? In: örner, G.B., Gottlöber, S. (eds.), Dahlem Workshop Report ES19 The Evolution of the Universe, Berlin 1995, p. 51. Wiley, Chichester (1997)

  58. Ellis, G.F.R., Buchert, T.: The universe seen at different scales. Phys. Lett. A 347 (Einstein Special Issue), 38 (2005). arXiv:gr-qc/0506106

  59. Ellis, G.F.R., van Elst, H.: Cosmological Models (Cargèse Lectures 1998). In Proc. of the NATO Advanced Study Institute on Theoretical and Observational Cosmology, Cargèse, France, August 17–29, 1998, edited by M. Lachièze–Rey, (Kluwer Academic, Boston, 1999), 1–116 and NATO Science Series C 541, 1–116 (1999). arXiv:gr-qc/9812046

  60. Ellis, G.F.R., Maartens, R., MacCallum, M.A.H.: Relativistic Cosmology. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  61. Ellis, G.F.R., Nel, S.D., Maartens, R., Stoeger, W.R., Whitman, A.P.: Ideal observational cosmology. Phys. Rep. 124, 315 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  62. Ellis, G.F.R., Solomons, D.M.: Caustics of compensated spherical lens models. Class. Quantum Gravity 15, 2381 (1998). arXiv:gr-qc/9802005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Elmardi, M.Y.A.: Topics in Relativistic Cosmology: Cosmology on the Past Lightcone and in Modified Gravitation. Ph.D. thesis, University of Cape Town, South Africa (January 2018). [Inspire]

  64. van Elst, H.: Extensions and applications of \(1+3\) decomposition methods in general relativistic cosmological modelling. Ph.D. thesis, University of London (1996). [NASA/ADS]

  65. van Elst, H.: \((1+3)\)-Covariant Methods in General Relativistic Cosmology. University of Cape Town (1998)

  66. van Elst, H.: An introduction to inductive statistical inference: from parameter estimation to decision-making. arXiv:1808.10173

  67. van Elst, H., Uggla, C., Lesame, W.M., Ellis, G.F.R., Maartens, R.: Integrability of irrotational silent cosmological models. Class. Quantum Gravity 14, 1151–1162 (1997). arXiv:gr-qc/9611002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Enqvist, K., Mattsson, T.: The effect of inhomogeneous expansion on the supernova observations. J. Cosmol. Astropart. Phys. 02, 019 (2007). arXiv:astro-ph/0609120

    Article  ADS  Google Scholar 

  69. Etherington, I.M.H.: On the definition of distance in general relativity. Philos. Mag. J. Sci. 15, 761 (1933). Reprinted: Gen. Relativ. Gravit. 39, 1055 (2007)

  70. Fanizza, G., Gasperini, M., Marozzi, G., Veneziano, G.: Generalized covariant prescriptions for averaging cosmological observables. J. Cosmol. Astropart. Phys. 02, 017 (2020). arXiv:1911.09469

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Fleury, P., Dupuy, H., Uzan, J.P.: Interpretation of the Hubble diagram in a nonhomogeneous universe. Phys. Rev. D 87, 123526 (2013). arXiv:1302.5308

    Article  ADS  Google Scholar 

  72. Fleury, P., Dupuy, H., Uzan, J.P.: Can all cosmological observations be accurately interpreted with a unique geometry? Phys. Rev. Lett. 111, 091302 (2013). arXiv:1304.7791

    Article  ADS  Google Scholar 

  73. Fleury, P., Nugier, F., Fanizza, G.: Geodesic-light-cone coordinates and the Bianchi I spacetime. J. Cosmol. Astropart. Phys. 06, 008 (2016). arXiv:1602.04461

    Article  ADS  MathSciNet  Google Scholar 

  74. Gabbard, H., Williams, M., Hayes, F., Messenger, C.: Matching matched filtering with deep networks for gravitational-wave astronomy. Phys. Rev. Lett. 120, 141103 (2018). arXiv:1712.06041

    Article  ADS  Google Scholar 

  75. Gasperini, M., Marozzi, G., Veneziano, G.: A covariant and gauge invariant formulation of the cosmological ‘backreaction’. J. Cosmol. Astropart. Phys. 02, 009 (2010). arXiv:0912.3244

    Article  ADS  Google Scholar 

  76. Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: Light-cone averaging in cosmology: formalism and applications. J. Cosmol. Astropart. Phys. 07, 008 (2011). arXiv:1104.1167

    Article  ADS  Google Scholar 

  77. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. Chapman & Hall, Boca Raton (2014)

    MATH  Google Scholar 

  78. Giblin, J.T., Mertens, J.B., Starkman, G.D.: Departures from the Friedmann–Lemaître–Robertson–Walker cosmological model in an inhomogeneous Universe: a numerical examination. Phys. Rev. Lett. 116, 251301 (2016). arXiv:1511.01105

  79. Giblin, J.T., Mertens, J.B., Starkman, G.D.: Observable deviations from homogeneity in an inhomogeneous Universe. Astrophys. J. 833, 247 (2016). arXiv:1608.04403

    Article  ADS  Google Scholar 

  80. Giblin, J.T., Mertens, J.B., Starkman, G.D., Tian, C.: Limited accuracy of linearized gravity. Phys. Rev. D 99, 023527 (2019). arXiv:1810.05203

    Article  ADS  MathSciNet  Google Scholar 

  81. Goldberg, J.N., Sachs, R.K.: A theorem on Petrov types. Acta Phys. Polon. 22, 1323. Suppl. Reprinted as a Golden Oldie: Gen. Relativ. Gravit. 41, 433 (2009)

  82. Gourgoulhon, E., Jaramillo, J.L.: A \(3+1\) perspective on null hypersurfaces and isolated horizons. Phys. Rep. 423, 159–294 (2006). arXiv:gr-qc/0503113

    Article  ADS  MathSciNet  Google Scholar 

  83. Grasso, M., Korzyński, M., Serbenta, J.: Geometric optics in general relativity using bilocal operators. Phys. Rev. D 99, 064038 (2019). arXiv:1811.10284

    Article  ADS  MathSciNet  Google Scholar 

  84. Grasso, M., Villa, E., Korzyński, M., Matarrese, S.: Isolating nonlinearities of light propagation in inhomogeneous cosmologies. Phys. Rev. D 104, 043508 (2021). arXiv:2105.04552

    Article  ADS  MathSciNet  Google Scholar 

  85. Hawking, S.: Gravitational radiation in an expanding universe. J. Math. Phys. 9, 598 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  86. Hayward, S.A.: Quasilocal gravitational energy. Phys. Rev. D 49, 831 (1994). arXiv:gr-qc/9303030

    Article  ADS  MathSciNet  Google Scholar 

  87. Heinesen, A.: Multipole decomposition of the general luminosity distance ‘Hubble law’ - a new framework for observational cosmology. J. Cosmol. Astropart. Phys. 05, 008 (2021). arXiv:2010.06534

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Heinesen, A.: Multipole decomposition of redshift drift: model-independent mapping of the expansion history of the Universe. Phys. Rev. D 103, 023537 (2021). arXiv:2011.10048

    Article  ADS  MathSciNet  Google Scholar 

  89. Heinesen, A.: Redshift drift as a model independent probe of dark energy. Phys. Rev. D 103, L081302 (2021). arXiv:2102.03774

    Article  ADS  MathSciNet  Google Scholar 

  90. Heinesen, A.: Redshift drift cosmography for model-independent cosmological inference. Phys. Rev. D 104, 123527 (2021). arXiv:2107.08674

    Article  ADS  MathSciNet  Google Scholar 

  91. Heinesen, A., Buchert, T.: Solving the curvature and Hubble parameter inconsistencies through structure formation-induced curvature. Class. Quantum Gravity 37, 164001 (2000). (Focus issue on the Hubble constant tension); Erratum (2020). Class. Quantum Gravity 37, 229601 (2000). arXiv:2002.10831

  92. Heinesen, A., Macpherson, H.J.: A prediction for anisotropies in the nearby Hubble flow. J. Cosmol. Astropart. Phys. 03, 057 (2022). arXiv:2111.14423

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Hellaby, C.: The mass of the cosmos. Mon. Not. R. Astron. Soc. 370, 239 (2006). arXiv:astro-ph/0603637

    Article  ADS  Google Scholar 

  94. Hildebrandt, H., et al.: KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing. Mon. Not. R. Astron. Soc. 465, 1454 (2017). arXiv:1606.05338

    Article  ADS  Google Scholar 

  95. Israel, W.: Covariant double-null dynamics. Helv. Phys. Acta 69, 3 (1996)

    MathSciNet  MATH  Google Scholar 

  96. Jimenez, P., Loeb, A.: Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 573, 37 (2002). arXiv:astro-ph/0106145

    Article  ADS  Google Scholar 

  97. Jordan, P., Ehlers, J., Sachs, R.K.: Beiträge zur Theorie der reinen Gravitationsstrahlung. Akad. Wiss. Lit. Mainz, Abhandl. Math.–Nat. Kl. 1, 1–62 (1961). English translation: Contributions to the theory of pure gravitational radiation. Gen. Relativ. Gravit. 45, 2691–2753 (2013)

  98. Kantowski, R.: The Lamé equation for distance-redshift in partially filled beam Friedmann–Lemaître–Robertson–Walker cosmology. Phys. Rev. D 68, 123516 (2003). arXiv:astro-ph/0308419

    Article  ADS  Google Scholar 

  99. Kantowski, R., Kao, J.K., Thomas, R.C.: Distance-redshift relations in inhomogeneous Friedmann–Lemaître–Robertson–Walker cosmology. Astrophys. J. 545, 549 (2000)

    Article  ADS  Google Scholar 

  100. Kantowski, R., Thomas, R.C.: Distance-redshift in inhomogeneous \(\Omega _{0}=1\) Friedmann-Lemaître-Robertson-Walker cosmology. Astrophys. J. 561, 591 (2001). arXiv:astro-ph/0011176

    Article  Google Scholar 

  101. Koksbang, S.M.: Light propagation in Swiss cheese models of random close-packed Szekeres structures: effects of anisotropy and comparisons with perturbative results. Phys. Rev. D 95, 063532 (2017). arXiv:1703.03572

    Article  ADS  Google Scholar 

  102. Koksbang, S.M.: Another look at redshift drift and the backreaction conjecture. J. Cosmol. Astropart. Phys. 10, 036 (2019). arXiv:1909.13489

    Article  ADS  MathSciNet  MATH  Google Scholar 

  103. Koksbang, S.M.: Observations in statistically homogeneous, locally inhomogeneous cosmological toy-models without FLRW backgrounds. Mon. Not. R. Astron. Soc. 498, L135 (2020). arXiv:2008.07108

    Article  ADS  Google Scholar 

  104. Koksbang, S.M.: Understanding the Dyer-Roeder approximation as a consequence of local cancellations of projected shear and expansion rate fluctuations. Phys. Rev. D 104, 043505 (2021). arXiv:2106.12913

    Article  ADS  MathSciNet  Google Scholar 

  105. Kolb, E.W., Matarrese, S., Riotto, A.: On cosmic acceleration without dark energy. New J. Phys. 8, 322 (2006). arXiv:astro-ph/0506534

    Article  ADS  Google Scholar 

  106. Korzyński, M., Kopiński, J.: Optical drift effects in general relativity. J. Cosmol. Astropart. Phys. 03, 012 (2018). arXiv:1711.00584

  107. Korzyński, M., Miśkiewicz, J., Serbenta, J.: Weighing the spacetime along the line of sight using times of arrival of electromagnetic signals. Phys. Rev. D 104, 024026 (2021). arXiv:2102.00095

    Article  ADS  MathSciNet  Google Scholar 

  108. Kristian, J., Sachs, R.K.: Observations in cosmology. Astrophys. J. 143, 379–399 (1966). Reprinted as a Golden Oldie: Gen. Relativ. Gravit. 43 337–358 (2011)

  109. Lavinto, M., Räsänen, S., Szybka, S.J.: Average expansion rate and light propagation in a cosmological Tardis spacetime. J. Cosmol. Astropart. Phys. 12, 051 (2013)

    Article  ADS  Google Scholar 

  110. Li, N., Schwarz, D.J.: Onset of cosmological backreaction. Phys. Rev. D 76, 083011 (2007). arXiv:gr-qc/0702043

    Article  ADS  Google Scholar 

  111. Lu, T.H.C., Hellaby, C.: Obtaining the spacetime metric from cosmological observations. Class. Quantum Gravity 24, 4107 (2007). arXiv:0705.1060

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. Maartens, R., Bassett, B.A.: Gravitoelectromagnetism. Class. Quantum Gravity 15, 705 (1998). arXiv:gr-qc/9704059

    Article  ADS  Google Scholar 

  113. Maartens, R., Matravers, D.R.: Isotropic and semi-isotropic observations in cosmology. Class. Quantum Gravity 11, 2693 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. Macpherson, H.J.: Cosmological distances with general-relativistic ray tracing: framework and comparison to cosmographic predictions. J. Cosmol. Astropart. Phys. (submitted). arXiv:2209.06775

  115. Macpherson, H.J., Heinesen, A.: Luminosity distance and anisotropic sky-sampling at low redshifts: A numerical relativity study. Phys. Rev. D 104, 023525 (2021). Erratum. Phys. Rev. D 104, 109901 (2021). arXiv:2103.11918

  116. Macpherson, H.J., Lasky, P.D., Price, D.J.: Inhomogeneous cosmology with numerical relativity. Phys. Rev. D 95, 064028 (2017). arXiv:1611.05447

    Article  ADS  MathSciNet  Google Scholar 

  117. Macpherson, H.J., Price, D.J., Lasky, P.D.: Einstein’s Universe: cosmological structure formation in numerical relativity. Phys. Rev. D 99, 063522 (2019). arXiv:1807.01711

  118. Macpherson, H.J., Heinesen, A.: Ray tracing in full general relativity and all-sky map of cosmic distances (in preparation)

  119. McElreath, R.: Statistical Rethinking—A Bayesian Course with Examples in R and Stan, 2nd edn. Chapman & Hall, Boca Raton (2020)

    Book  Google Scholar 

  120. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  121. Mitsou, E., Fanizza, G., Grimm, N., Yoo, J.: Cutting out the cosmological middle man: general relativity in the light-cone coordinates. Class. Quantum Gravity 38, 055011 (2021). arXiv:2009.14687

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. Mustapha, N., Hellaby, C., Ellis, G.F.R.: Large-scale inhomogeneity versus source evolution: can we distinguish them observationally? Mon. Not. R. Astron. Soc. 292, 817 (1997). arXiv:gr-qc/9808079

    Article  ADS  Google Scholar 

  123. Mustapha, N., Bassett, B.A.C.C., Hellaby, C., Ellis, G.F.R.: The distortion of the area distance-redshift relation in inhomogeneous isotropic universes. Class. Quantum Gravity 15, 2363 (1998). arXiv:gr-qc/9708043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. Newman, E., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. Ng, A.: Machine Learning Yearning—Technical Strategy for AI Engineers, In the Era of Deep Learning (2018)

  126. Palle, D.: On the large-scale inhomogeneous Universe and the cosmological constant. Nuovo Cim. 117B, 687 (2002). arXiv:astro-ph/0205462

    ADS  Google Scholar 

  127. Paranjape, A., Singh, T.P.: Explicit cosmological coarse graining via spatial averaging. Gen. Relativ. Gravit. 40, 139 (2008). arXiv:astro-ph/0609481

    Article  ADS  MathSciNet  MATH  Google Scholar 

  128. Perivolaropoulos, L., Skara, F.: Challenges for \(\Lambda \)CDM: An update. New Astron. Rev. 95, 101659 (2022). arXiv:2105.05208

    Article  Google Scholar 

  129. Perlick, V.: Gravitational lensing from a spacetime perspective. Living Rev. Relat. 7, 9 (2004). arXiv:1010.3416

    Article  ADS  MATH  Google Scholar 

  130. Prelogović, D., Mesinger, A., Murray, S., Fiameni, G., Gillet, N.: Machine learning galaxy properties from 21 cm lightcones: impact of network architectures and signal contamination. Mon. Not. R. Astron. Soc. 509, 3852 (2021). arXiv:2107.00018

    Article  ADS  Google Scholar 

  131. Pyne, T., Birkinshaw, M.: The luminosity distance in perturbed FLRW spacetimes. Mon. Not. R. Astron. Soc. 348, 581 (2004). arXiv:astro-ph/0310841

    Article  ADS  Google Scholar 

  132. Räsänen, S.: Accelerated expansion from structure formation. J. Cosmol. Astropart. Phys. 11, 003 (2006). arXiv:astro-ph/0607626

    Article  ADS  Google Scholar 

  133. Räsänen, S.: Light propagation in statistically homogeneous and isotropic dust universes. J. Cosmol. Astropart. Phys. 02, 011 (2009). arXiv:0812.2872

    Article  ADS  Google Scholar 

  134. Räsänen, S.: Light propagation in statistically homogeneous and isotropic universes with general matter content. J. Cosmol. Astropart. Phys. JCAP03, 018 (2010). arXiv:0912.3370

  135. Räsänen, S.: Backreaction: directions of progress. Class. Quantum Gravity 28, 164008 (2011). arXiv:1102.0408

    Article  ADS  MATH  Google Scholar 

  136. Ratsimbazafy, A.L., et al.: Age-dating luminous red galaxies observed with the southern African large telescope. Mon. Not. R. Astron. Soc. 467, 3239 (2017). arXiv:1702.00418

    Article  ADS  Google Scholar 

  137. Riess, A.G., et al.: Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876, 85 (2019). arXiv:1903.07603

    Article  ADS  Google Scholar 

  138. Roeder, R.C.: Apparent magnitudes, redshifts, and inhomogeneities in the universe. Astrophys. J. 196, 671 (1975)

    Article  ADS  Google Scholar 

  139. Roy, X.: On the 1+3 formalism in general relativity (2014). arXiv:1405.6319

  140. Roy, X., Buchert, T., Carloni, S., Obadia, N.: Global gravitational instability of FLRW backgrounds—interpreting the dark sectors. Class. Quantum Gravity 28, 165004 (2011). arXiv:1103.1146

    Article  ADS  MathSciNet  MATH  Google Scholar 

  141. Sachs, R.: Gravitational waves in general relativity, VI. The outgoing radiation condition. Proc. R. Soc. Lond. A 264, 309–338 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  142. Sanghai, V.A.A., Fleury, P., Clifton, T.: Ray tracing and Hubble diagrams in post-Newtonian cosmology. J. Cosmol. Astropart. Phys. 07, 028 (2017). arXiv:1705.02328

    Article  ADS  MathSciNet  MATH  Google Scholar 

  143. Sasaki, M.: Cosmological gravitational lens equation—its validity and limitation. Progr. Theor. Phys. 90, 753 (1993)

    Article  ADS  Google Scholar 

  144. Sasaki, M.: The magnitude-redshift relation in a perturbed Friedmann universe. Mon. Not. R. Astron. Soc. 228, 653 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. Schmalzing, J., Buchert, T.: Beyond genus statistics: a unifying approach to the morphology of cosmic structure. Astrophys. J. 482, L1 (1997). arXiv:astro-ph/9702130

    Article  ADS  Google Scholar 

  146. Schneider, P., Ehlers, J., Falco, E.E.: Gravitational lenses. Springer, Berlin (1992)

    Book  Google Scholar 

  147. Seitz, S., Schneider, P., Ehlers, J.: Light propagation in arbitrary space-times and the gravitational lens approximation. Class. Quantum Gravity 11, 2345 (1994). arXiv:astro-ph/9403056

    Article  ADS  MATH  Google Scholar 

  148. Sikora, S., Głód, K.: Example of an inhomogeneous cosmological model in the context of backreaction. Phys. Rev. D 95, 063517 (2017). arXiv:1612.03604

    Article  ADS  MathSciNet  Google Scholar 

  149. Stephani, H.: Allgemeine Relativitätstheorie, 4th edn. Dt. Verlag d. Wissenschaften, Berlin (1991)

  150. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C.A., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  151. Stewart, J.M., Ellis, G.F.R.: Solutions of Einstein’s equations for a fluid which exhibits local rotational symmetry. J. Math. Phys. 9, 1072–1082 (1968)

    Article  ADS  Google Scholar 

  152. Stock, D.: The Hawking energy on the past lightcone in cosmology. Class. Quantum Gravity 37, 215005 (2020). arXiv:2003.13583

    Article  ADS  MathSciNet  MATH  Google Scholar 

  153. Stock, D.: Applications of the Hawking energy in inhomogeneous cosmology. Class. Quantum Gravity 38, 075019 (2021). arXiv:2010.07896

    Article  ADS  MathSciNet  MATH  Google Scholar 

  154. Sussman, R.A.: Back-reaction and effective acceleration in generic LTB dust models. Class. Quantum Gravity 28, 235002 (2011). arXiv:1102.2663

    Article  ADS  MathSciNet  MATH  Google Scholar 

  155. Sussman, R.A.: Weighed scalar averaging in LTB dust models, part I: statistical fluctuations and gravitational entropy. Class. Quantum Gravity 30, 065015 (2013). arXiv:1209.1962

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. Umeh, O.: The influence of structure formation on the evolution of the Universe. Ph.D. thesis, University of Cape Town, Faculty of Science, Department of Mathematics and Applied Mathematics (2013)

  157. Uzun, N.: Reduced phase space optics for general relativity: symplectic ray bundle transfer. Class. Quantum Gravity 37, 045002 (2020). arXiv:1811.10917

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. Vanderveld, R.A., Flanagan, É.É., Wasserman, I.: Systematic corrections to the measured cosmological constant as a result of local inhomogeneity. Phys. Rev. D 76, 083504 (2007). arXiv:0706.1931

    Article  ADS  Google Scholar 

  159. Vigneron, Q., Buchert, T.: Dark Matter from Backreaction? Collapse models on galaxy cluster scales. Class. Quantum Gravity 36, 175006 (2019). arXiv:1902.08441

    Article  ADS  MathSciNet  MATH  Google Scholar 

  160. Wainwright, J., Ellis, G.F.R. (eds.): Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  161. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  162. Weinberg, S.: Apparent luminosities in a locally inhomogeneous universe. Astrophys. J. 208, L1 (1976)

    Article  ADS  Google Scholar 

  163. Wiegand, A., Buchert, T.: Multiscale cosmology and structure-emerging dark energy: a plausibility analysis. Phys. Rev. D 82, 023523 (2010). arXiv:1002.3912

    Article  ADS  Google Scholar 

  164. Wiltshire, D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9, 377 (2007). arXiv:gr-qc/0702082

    Article  ADS  Google Scholar 

  165. Wiltshire, D.L.: What is dust? Physical foundations of the averaging problem in cosmology. Class. Quantum Gravity 28, 164006 (2011). arXiv:1106.1693

    Article  ADS  MathSciNet  MATH  Google Scholar 

  166. Wiltshire, D.L.: Cosmic structure, averaging and dark energy. In: Novello, M., Perez Bergliaffa, S.E. (eds.) Cosmology and Gravitation: XVth Brazilian School of Cosmology and Gravitation, pp. 203–244. Cambridge Scientific Publishers, Cambridge (2014). arXiv:1311.3787

  167. Yoo, J., Durrer, R.: Gauge-transformation properties of cosmological observables and its application to the light-cone average. J. Cosmol. Astropart. Phys. 09, 016 (2017). arXiv:1705.05839

    Article  ADS  MathSciNet  MATH  Google Scholar 

  168. Yoo, J., Mitsou, E., Grimm, N., Durrer, R., Refregier, A.: Cosmological information contents on the light-cone. J. Cosmol. Astropart. Phys. 12, 015 (2019). arXiv:1905.08262

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement ERC advanced Grant 740021-ARTHUS, PI: TB). The authors would like to thank Jürgen Ehlers, George Ellis, Pierre Mourier, Dominik Schwarz and Nezihe Uzun for useful discussions, and Giuseppe Fanizza, Syksy Räsänen and Dennis Stock for valuable comments on the manuscript. We would in addition like to thank the anonymous referee for constructive suggestions that helped improving the paper. This work has been begun during a visit of TB in 2007 to the University of Bielefeld, Germany. TB wishes to thank Dominik Schwarz for his invitation to hold a temporary C4-chair at the department of physics. HvE acknowledges the generous hospitality of the UCT Cosmology and Gravity Group during the period from July to October 2010 when a significant share of the work underlying this paper was accomplished.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Buchert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work supported by ERC advanced Grant 740021-ARTHUS.

Light front-adapted spacetime metric

Light front-adapted spacetime metric

We shall consider the embedding of the light fronts into the cosmological spacetime, and write the metric tensor in local coordinates that are adapted to the screen space, \(x^\mu = (\tau , V, x^A)\). We require that the local coordinates \(x^{A}\), with \(A = 2,3\), satisfy the propagation law \(k^{\rho }\partial _{\rho }x^A = 0\). The propagation laws for \(\tau \) and V are also fixed through \(k^{\rho }\partial _{\rho }\tau = E\) and \(k^{\rho }\partial _{\rho }V = 0\) (see Eqs. (24) and (7)), and the full adapted system of local coordinates \(x^\mu = (\tau ,V, x^A)\) is thus specified throughout the past null cone domain, once initial conditions for the local coordinates are fixed at a screen space. In these local coordinates, we have that

$$\begin{aligned}&k_\mu = (0, {1}, 0,0) ; \quad u_\mu = ( {-1},0,0,0) ; \end{aligned}$$
(A.1)
$$\begin{aligned}&k^\mu = ( {E},0, 0,0); \quad u^\mu = ( {1, - E, EU^A}) , \end{aligned}$$
(A.2)

where \(U^A := u^{\rho }\partial _{\rho }(x^A) /E\) defines the drift of the screen space coordinates in the matter frame. The one-form components in (A.1) follow directly from the definitions \(k_\mu := \partial _\mu V\) and \(u_\mu := - \partial _\mu \tau \). The vector components in (A.2) follow from the definition of the energy function \(E := - k^\mu u_\mu \) and the transport rules (shift vectors) \(k^{\rho }\partial _{\rho }(x^A) = 0\) and \(u^{\rho }\partial _{\rho }(x^A) = E U^A\). We may now write the projection tensor onto the light fronts (11) in the adapted local coordinate system \(x^\mu = (\tau , V, x^A)\):

$$\begin{aligned} p_{\mu \nu } = \left( \begin{array}{ccc} 0 &{} 0 &{} \textbf{0} \\ 0 &{} \, \, U^2 \, \, &{} U_B \\ \textbf{0} &{} U_A &{} p_{AB} \\ \end{array} \right) ;\quad p^{\mu \nu } = \left( \begin{array}{ccc} 0 &{} 0 &{} \textbf{0} \\ 0 &{} \, \, 0 \, \, &{} \textbf{0} \\ \textbf{0} &{} \textbf{0} &{} p^{AB} \\ \end{array} \right) , \end{aligned}$$
(A.3)

where \(U_A := p_{AB} U^B\) and \(U^2 := p_{AB} U^A U^B\), and where the area-adapted screen space metric \(p_{AB}\) has inverse \(p^{AB}\). The tensor components in (A.3) follow from the orthogonality conditions \(p_{\mu \nu } k^\nu = p_{\mu \nu } u^\nu = 0\) and \(p^{\mu \nu } k_\nu = p^{\mu \nu } u_\nu = 0\), respectively. Note that in general the values of the components \(p_{11}\), \(p_{1A}\) and \(p_{A1}\) are non-zero, which comes from generally non-zero values for \(u^1\) and \(u^A\) in (A.2).

Using the definitions (10a) and (11), we might formulate the metric tensor for the cosmological spacetime as \(g_{\mu \nu } = k_\mu k_\nu /E^2 - (k_\mu u_\nu + u_\mu k_\nu )/E + p_{\mu \nu }\), and insert Eqs. (A.1), (A.2), and (A.3) in this formulation to obtain

$$\begin{aligned} { g_{\mu \nu } = \left( \begin{array}{ccc} 0 &{} 1/E &{} \textbf{0} \\ 1/E &{} \, (1/E^2) \! + \! U^2 \, &{} U_B \\ \textbf{0} &{} {U_A} &{} p_{AB} \\ \end{array} \right) ;\quad g^{\mu \nu } = \left( \begin{array}{ccc} -1 &{} \, E \, &{} {-} E U^B \\ E &{} 0 &{} \textbf{0} \\ {-} E U^{A} &{} \textbf{0} &{} p^{AB} \\ \end{array} \right) .} \end{aligned}$$
(A.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchert, T., van Elst, H. & Heinesen, A. The averaging problem on the past null cone in inhomogeneous dust cosmologies. Gen Relativ Gravit 55, 7 (2023). https://doi.org/10.1007/s10714-022-03051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-03051-x

Keywords

Navigation