Skip to main content
Log in

Microstructure of five-dimensional neutral Gauss–Bonnet black hole in anti-de Sitter spacetime via \(P-V\) criticality

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this article, we analytically investigate the microstructure of a five-dimensional neutral Gauss–Bonnet black hole, in the background of anti-de Sitter spacetime, by using the scalar curvature of the Ruppeiner geometry constructed via adiabatic compressibility. The microstructure details associated with the small-large black hole phase transition are probed in the parameter space of pressure and volume. The curvature scalar shows similar properties for both phases of the black hole, it diverges at the critical point with a critical exponent 2, and approaches zero for extremal black holes. We show that the dominant interaction among black hole molecules is attractive. This study also confirms that the nature of the microstructure interaction remains unchanged during the small-large black hole phase transition, even though the microstructures are different for both phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Kastor, D., Ray, S., Traschen, J.: Class. Quant. Grav. 26, 195011 (2009). https://doi.org/10.1088/0264-9381/26/19/195011

    Article  ADS  Google Scholar 

  2. Dolan, B.P.: Class. Quant. Grav. 28, 235017 (2011). https://doi.org/10.1088/0264-9381/28/23/235017

    Article  ADS  Google Scholar 

  3. Kubiznak, D., Mann, R.B.: JHEP 07, 033 (2012). https://doi.org/10.1007/JHEP07(2012)033

    Article  ADS  Google Scholar 

  4. Gunasekaran, S., Mann, R.B., Kubiznak, D.: JHEP 11, 110 (2012). https://doi.org/10.1007/JHEP11(2012)110

    Article  ADS  Google Scholar 

  5. Kubiznak, D., Mann, R.B., Teo, M.: Class. Quant. Grav. 34(6), 063001 (2017). https://doi.org/10.1088/1361-6382/aa5c69

    Article  ADS  Google Scholar 

  6. Wei, S.W., Liu, Y.X.: Phys. Rev. Lett. 115(11), 111302 (2015) https://doi.org/10.1103/PhysRevLett.116.169903 [Erratum: Phys. Rev. Lett.116, no.16,169903(2016)]

  7. Wei, S.W., Liu, Y.X., Mann, R.B.: Phys. Rev. Lett. 123(7), 071103 (2019). https://doi.org/10.1103/PhysRevLett.123.071103

    Article  ADS  MathSciNet  Google Scholar 

  8. Wei, S.W., Liu, Y.X., Mann, R.B.: Phys. Rev. D 100(12), 124033 (2019). https://doi.org/10.1103/PhysRevD.100.124033

    Article  ADS  MathSciNet  Google Scholar 

  9. Guo, X.Y., Li, H.F., Zhang, L.C., Zhao, R.: Phys. Rev. D 100(6), 064036 (2019). https://doi.org/10.1103/PhysRevD.100.064036

    Article  ADS  MathSciNet  Google Scholar 

  10. Miao, Y.G., Xu, Z.M.: Phys. Rev. D 98, 044001 (2018). https://doi.org/10.1103/PhysRevD.98.044001

    Article  ADS  Google Scholar 

  11. Kord Zangeneh, M., Dehyadegari, A., Sheykhi, A., Mann, R.B.: Phys. Rev. D97(8), 084054 (2018). https://doi.org/10.1103/PhysRevD.97.084054

    Article  ADS  Google Scholar 

  12. Wei, S.W., Liu, Y.X.: Phys. Lett. B 803, 135287 (2020). https://doi.org/10.1016/j.physletb.2020.135287

    Article  MathSciNet  Google Scholar 

  13. Naveena Kumara, A., Ahmed Rizwan, C.L., Hegde, K., Ali, M.S., Ajith, K.M.: Phys. Rev. D 103(4), 044025 (2021). https://doi.org/10.1103/PhysRevD.103.044025

    Article  ADS  Google Scholar 

  14. Naveena Kumara, A., Rizwan, C.A., Hegde, K.M.: Phys. Lett. B807, 135556 (2020). https://doi.org/10.1016/j.physletb.2020.135556

    Article  Google Scholar 

  15. Rizwan, C.L.A., Naveena Kumara, A., Hegde, K., Vaid, D. (2020). Annals Phys. 422, 168320 https://doi.org/10.1016/j.aop.2020.168320

  16. Kumara, A.N., Rizwan, C.L.A., Hegde, K., M., A.K., Ali, M.S.: Progress of Theoretical and Experimental Physics (2021). https://doi.org/10.1093/ptep/ptab065. Ptab065

  17. Kumara, A.N., Rizwan, C.L.A., Vaid, D., Ajith, K.M.: arXiv:1906.11550 (2019)

  18. Xu, Z.M., Wu, B., Yang, W.L.: Chin. Phys. C 44(9), 095106 (2020). https://doi.org/10.1088/1674-1137/44/9/095106

    Article  ADS  Google Scholar 

  19. Chabab, M., El Moumni, H., Iraoui, S., Masmar, K., Zhizeh, S.: Int. J. Geom. Meth. Mod. Phys. 15(10), 1850171 (2018). https://doi.org/10.1142/S0219887818501712

    Article  Google Scholar 

  20. Deng, G.M., Huang, Y.C.: Int. J. Mod. Phys. A 32(35), 1750204 (2017). https://doi.org/10.1142/S0217751X17502049

    Article  ADS  Google Scholar 

  21. Miao, Y.G., Xu, Z.M.: Nucl. Phys. B 942, 205 (2019). https://doi.org/10.1016/j.nuclphysb.2019.03.015

    Article  ADS  Google Scholar 

  22. Chen, Y., Li, H., Zhang, S.J.: Nucl. Phys. B 948, 114752 (2019). https://doi.org/10.1016/j.nuclphysb.2019.114752

    Article  Google Scholar 

  23. Du, Y.Z., Zhao, H.H., Zhang, L.C.: Adv. High Energy Phys. 2020, 6395747 (2020). https://doi.org/10.1155/2020/6395747

    Article  Google Scholar 

  24. Dehyadegari, A., Sheykhi, A., Montakhab, A.: Phys. Lett. B 768, 235 (2017). https://doi.org/10.1016/j.physletb.2017.02.064

    Article  ADS  Google Scholar 

  25. Xu, Z.M., Wu, B., Yang, W.L.: Phys. Rev. D 101(2), 024018 (2020). https://doi.org/10.1103/PhysRevD.101.024018

    Article  ADS  MathSciNet  Google Scholar 

  26. Miao, Y.G., Xu, Z.M.: Phys. Rev. D 98(8), 084051 (2018). https://doi.org/10.1103/PhysRevD.98.084051

    Article  ADS  MathSciNet  Google Scholar 

  27. Xu, Z.M.: Phys. Lett. B 807, 135529 (2020). https://doi.org/10.1016/j.physletb.2020.135529

    Article  MathSciNet  Google Scholar 

  28. Xu, Z.M., Wu, B., Yang, W.L.: Eur. Phys. J. C 80(10), 997 (2020). https://doi.org/10.1140/epjc/s10052-020-08563-x

    Article  ADS  Google Scholar 

  29. Ghosh, A., Bhamidipati, C.: Phys. Rev. D 101(4), 046005 (2020). https://doi.org/10.1103/PhysRevD.101.046005

    Article  ADS  MathSciNet  Google Scholar 

  30. Ghosh, A., Bhamidipati, C.: Phys. Rev. D 101(10), 106007 (2020). https://doi.org/10.1103/PhysRevD.101.106007

    Article  ADS  MathSciNet  Google Scholar 

  31. Yerra, P.K., Bhamidipati, C.: Int. J. Mod. Phys. A 35(22), 2050120 (2020). https://doi.org/10.1142/S0217751X20501201

    Article  ADS  Google Scholar 

  32. Wu, B., Wang, C., Xu, Z.M., Yang, W.L.: arXiv:2006.09021 (2020)

  33. Ruppeiner, G.: Rev. Mod. Phys. 67, 605 (1995). https://doi.org/10.1103/RevModPhys.67.605 [Erratum: Rev. Mod. Phys.68,313(1996)]

  34. Janyszek, H., Mrugaa, R.: J. Phys. A: Math. Gen. 23(4), 467 (1990). https://doi.org/10.1088/0305-4470/23/4/016

    Article  ADS  Google Scholar 

  35. Oshima, H., Obata, T., Hara, H.: J. Phys. A: Math. Gen. 32(36), 6373 (1999). https://doi.org/10.1088/0305-4470/32/36/302

    Article  ADS  Google Scholar 

  36. Mirza, B., Mohammadzadeh, H.: Phys. Rev. E 78, 021127 (2008). https://doi.org/10.1103/PhysRevE.78.021127

    Article  ADS  Google Scholar 

  37. May, H.O., Mausbach, P., Ruppeiner, G.: Phys. Rev. E 88, 032123 (2013). https://doi.org/10.1103/PhysRevE.88.032123

    Article  ADS  Google Scholar 

  38. Ruppeiner, G.: Phys. Rev. D 78, 024016 (2008). https://doi.org/10.1103/PhysRevD.78.024016

    Article  ADS  MathSciNet  Google Scholar 

  39. Dehyadegari, A., Sheykhi, A., Wei, S.W.: Phys. Rev. D 102(10), 104013 (2020). https://doi.org/10.1103/PhysRevD.102.104013

    Article  ADS  MathSciNet  Google Scholar 

  40. Boulware, D.G., Deser, S.: Phys. Rev. Lett. 55, 2656 (1985). https://doi.org/10.1103/PhysRevLett.55.2656

    Article  ADS  Google Scholar 

  41. Cai, R.G.: Phys. Rev. D 65, 084014 (2002). https://doi.org/10.1103/PhysRevD.65.084014

    Article  ADS  MathSciNet  Google Scholar 

  42. Wiltshire, D.: Phys. Lett. B 169, 36 (1986). https://doi.org/10.1016/0370-2693(86)90681-7

    Article  ADS  MathSciNet  Google Scholar 

  43. Cvetic, M., Nojiri, S., Odintsov, S.D.: Nucl. Phys. B 628, 295 (2002). https://doi.org/10.1016/S0550-3213(02)00075-5

    Article  ADS  Google Scholar 

  44. Cai, R.G., Cao, L.M., Li, L., Yang, R.Q.: JHEP 09, 005 (2013). https://doi.org/10.1007/JHEP09(2013)005

    Article  ADS  Google Scholar 

  45. Mo, J.X., Li, G.Q.: Phys. Rev. D 92(2), 024055 (2015). https://doi.org/10.1103/PhysRevD.92.024055

    Article  ADS  MathSciNet  Google Scholar 

  46. Wei, S.W., Cheng, P., Liu, Y.X.: Phys. Rev. D 93(8), 084015 (2016). https://doi.org/10.1103/PhysRevD.93.084015

    Article  ADS  MathSciNet  Google Scholar 

  47. Spallucci, E., Smailagic, A.: Phys. Lett. B 723, 436 (2013). https://doi.org/10.1016/j.physletb.2013.05.038

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors NKA, ARCL and KH would like to thank U.G.C. Govt. of India for financial assistance under UGC-NET-SRF scheme. The research of MSA is supported by the National Postdoctoral Fellowship of the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, File No. PDF/2021/003491.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Naveena Kumara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumara, A.N., Rizwan, C.L.A., Hegde, K. et al. Microstructure of five-dimensional neutral Gauss–Bonnet black hole in anti-de Sitter spacetime via \(P-V\) criticality. Gen Relativ Gravit 55, 4 (2023). https://doi.org/10.1007/s10714-022-03050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-03050-y

Keywords

Navigation