Skip to main content
Log in

Magnetogenesis in Higgs inflation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the generation of magnetic fields in the Higgs inflation model with the axial coupling in order to break the conformal invariance of the Maxwell action and produce strong enough magnetic fields for observed large-scale magnetic fields. This interaction breaks the parity and enables a production of only one of the polarization states of the electromagnetic field due to axion-like coupling of electromagnetic field to the inflation. Therefore, the produced magnetic fields are helical. In fact,calculations show the mode of one polarization undergoes amplification, while the other one diminishes. We consider radiatively corrected Higgs inflation potential. In comparison to the Starobinsky potential, we obtain an extra term as a one loop correction and determine the spectrum of generalized electromagnetic fields. The effect of quantum correction modifies potential so that in some certain conditions when back reaction is weak the observed large-scale magnetic field can be explained by our modified potential. We should emphasize in this model we only consider linear approximation for electromagnetic field so that the theory does not contain higher-order derivatives and the so-called ghost degrees of freedom. Therefore, the theory is consistent with cosmology. In addition,the magnetic field generated in this model has very small correlation length. It is impossible to explain within this model both the strength of magnetic field and its large coherence length. Due to the nontrivial helicity, the produced magnetic fields undergo the inverse cascade process in the turbulent plasma which can strongly increase their correlation length. We find that, for two values of coupling parameter \(\chi _{1}=5\times 10^{9}M_{p}^{-2}\) and \(\chi _{1}=7.5\times 10^{9}M_{p}^{-2}\), the back-reaction is weak and our analysis is valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ade, P.A.R., et al.: (Planck Collaboration): Planck 2015 results. XIX. Constraints on primordial magnetic fields. Astron. Astrophys. 594, A19 (2016)

  2. Aghanim, N. et al. (Planck Collaboration): Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209v1

  3. Barvinsky, A., Kamenshchik, A.Y., Starobinsky, A.: Inflation scenario via the standard model Higgs boson and LHC. JCAP 0811, 021 (2008)

    Article  ADS  Google Scholar 

  4. Barvinsky, A.O., Kamenshchik, A.Y., Kiefer, C., Starobinsky, A.A., Steinwachs, C.: Asymptotic freedom in inflationary cosmology with a non-minimal coupled Higgs field. JCAP 0912, 003 (2009)

    Article  ADS  Google Scholar 

  5. Barvinsky, A.O., Shaposhnikov, M.: Standard Model Higgs boson mass from inflation: two loop analysis. JHEP 07, 089 (2009)

    ADS  Google Scholar 

  6. Barvinsky, A.O., Kamenshchik, A.Y., Kiefer, C., Starobinsky, A.A., Steinwachs, C.F.: Higgs boson, renormalization group, and naturalness in cosmology. arXiv:0910.1041v3 [hep-ph] (2012)

  7. Bamba, K., Yokoyama, J.: Large scale magnetic fields from inflation in dilaton electromagnetism. Phys. Rev. D 69, 043507 (2004)

    Article  ADS  Google Scholar 

  8. Bezrukov, F.L., Shaposhnikov, M.: The standard model Higgs boson as the inflation. Phys. Lett. B 659, 703706 (2008)

    Article  Google Scholar 

  9. Bezrukov, F., Gorbunov, D., Shaposhnikov, M.: On the initial conditions for the Hot Big Bang. JCAP 0906, 029 (2009)

    Article  ADS  Google Scholar 

  10. Bezrukov, F., Rubio, J., Shaposhnikov, M.: Living beyond the edge: Higgs inflation and vacuum metastability. Phys. Rev. D 92, 88 (2009)

    Google Scholar 

  11. Bezrukov, F., Shaposhnikov, M.: Standard model Higgs boson mass from inflation: two loop analysis. arXiv:0904.1537v2 [hep-ph] (2009)

  12. Bezrukov, F.L., Magnin, A., Shaposhnikov, M.: Standard model Higgs boson mass from inflation. Phys. Lett. B 675, 703 (2009)

    Article  Google Scholar 

  13. Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  14. Buttazzo, D., Degrassi, G., Giardino, P.P., Giudice, G.F., Sala, F., Salvio, A., Strumia, A.: Investigating the near-criticality of the Higgs boson. JHEP 12(089), 089 (2013)

    Article  ADS  Google Scholar 

  15. Caprini, C., Gabici, S.: Gamma-ray observations of blazars and the intergalactic magnetic field spectrum. Phys. Rev. D 91, 123514 (2015)

    Article  ADS  Google Scholar 

  16. de Simone, A., Hertzberg, M.P., Wilczek, F.: Running inflation in the standard model. Phys. Lett. B 678, 1 (2008)

    Article  Google Scholar 

  17. Demozzi, V., Mukhanov, V.M., Rubinstein, H.: Magnetic fields from inflation? J. Cosmol. Astropart. Phys. 08, 025 (2009)

    Article  ADS  Google Scholar 

  18. Dolgov, A.D.: Breaking of conformal invariance and electromagnetic field generation in the universe. Phys. Rev. D 48, 2499 (1993)

    Article  ADS  Google Scholar 

  19. Durrer, R., Neronov, A.: Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013)

    Article  ADS  Google Scholar 

  20. Durrer, R., Hollenstein, L., KumarJain, R.: Can slow roll inflation induce relevant helical magnetic fields. JCAP 03(037), 037 (2011)

    Article  ADS  Google Scholar 

  21. Faraoni, V., Gunzig, E., Nardone, P.: Conformal transformations in classical gravitational theories and in cosmology. arXiv:gr-qc/9811047v1

  22. Ferreira, R.J.Z., Jain, R.K., Sloth, M.S.: Inflationary magnetogenesis without the strong coupling problem. J. Cosmol. Astropart. Phys. 10, 004 (2013)

    Article  ADS  Google Scholar 

  23. Ferreira, R.J.Z., Jain, R.K., Sloth, M.S.: Inflationary magnetogenesis without the strong coupling problem II: Constraints from CMB anisotropies and B-modes. J. Cosmol. Astropart. Phys. 06, 053 (2014)

    Article  ADS  Google Scholar 

  24. Garcia-Bellindo, J., Figueroa, D.G., Rubio, J.: Preheating in the standard model with the Higgs-inflation coupled to gravity. Phys. Rev. D 79, 063531 (2009)

    Article  ADS  Google Scholar 

  25. Garretson, W.D., Field, G.B., Carroll, S.M.: Primordial magnetic fields from pseudo Goldstone bosons. Phys. Rev. D 46, 5346 (1992)

    Article  ADS  Google Scholar 

  26. Giovannini, M.: On the variation of the gauge couplings during inflation. Phys. Rev. D 64, 061301 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  27. Giovannini, M.: The magnetized universe. Int. J. Mod. Phys. D 13, 391 (2004)

    Article  ADS  MATH  Google Scholar 

  28. Gorbunov, D.S., Rubakov, V.A.: Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory. World Scientific Publishing, Singapore (2011)

    Book  MATH  Google Scholar 

  29. Grasso, D., Rubinstein, H.R.: Magnetic fields in the early universe. Phys. Rep. 348, 163 (2001)

    Article  ADS  Google Scholar 

  30. Guth, A.: The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Perseus Books (1997)

  31. Jedamzik, K., Saveliev, A.: A stringent limit on primordial magnetic fields from the cosmic microwave backround radiation. arXiv:1804.06115 [astro-ph.CO]

  32. Kandus, A., Kunze, K.E., Tsagas, C.G.: Primordial magnetogenesis. Phys. Rep. 505, 1 (2011)

    Article  ADS  Google Scholar 

  33. Kanno, S., Soda, J., Watanabe, M.: Cosmological magnetic fields from inflation and backreaction. J. Cosmol. Astropart. Phys. 12, 009 (2009)

    Article  ADS  Google Scholar 

  34. Ketov, S.V.: Modified supergravity and early universe: the meeting point of cosmology and high-energy physics. arXiv:1201.2239v3 [hep-th]

  35. Ketov, S.V., Starobinsky, A.A.: Embedding \( R+R^{2} \) inflation in supergravity. Phys. Rev. D 83, 063512 (2011)

    Article  ADS  Google Scholar 

  36. Kronberg, P.P.: Extragalactic magnetic fields. Rep. Prog. Phys. 57, 325 (1994)

    Article  ADS  Google Scholar 

  37. Liddle, A.R., Parsons, P., Barrow, J.D.: Formalizing the slow roll approximation in inflation. Phys. Rev. D 50, 7222 (1994)

    Article  ADS  Google Scholar 

  38. Linde, A.: Particle physics and inflationary cosmology. Contemp. Concepts Phys. 5, 1 (2005)

    Google Scholar 

  39. Lyth, D., Liddle, A.: The Primordial Density Perturbation. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  40. Maeda, K.I.: Towards the Einstein–Hilbert action via conformal transformation. Phys. Rev. D 39, 3159 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  41. Martin, J., Ringeval, C., Vennin, V.: Encyclopædia inflationaris. Phys. Dark Univ. 75, 5–6 (2014)

    Google Scholar 

  42. Martin, J., Yokoyama, J.: Generation of large-scale magnetic fields in single-field inflation. JCAP 01, 025 (2008)

    Article  ADS  Google Scholar 

  43. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  44. Neronov, A., Vovk, I.: Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010)

    Article  ADS  Google Scholar 

  45. Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968)

    Article  ADS  Google Scholar 

  46. Ratra, B.: Cosmological ‘seed’ magnetic field from inflation. Astrophys. J. 391, L1 (1992)

    Article  ADS  Google Scholar 

  47. Savchenko, O., Shtanov, Y.: Magnetogenesis by non-minimal coupling to gravity in the Starobinsky inflationary model. arXiv:1808.06193v1

  48. Sobol, O.O., Gorbar, E.V., Vilchinskii, S.I.: Backreaction of electromagnetic fields and the Schwinger effect in pseudoscalar inflation magnetogenesis. Phys. Rev. D 100, 063523 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  49. Sobol, O.O., Gorbar, E.V., Kamarpour, M., Vilchinskii, S.I.: Influence of back-reaction of electric fields and the Schwinger effect on inflationary magnetogenesis. Phys. Rev. D 98, 063534 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  50. Spokoiny, B.L.: Inflation and generation of perturbations in broken-symmetric theory of gravity. Phys. Lett. B 147, 39 (1984)

    Article  ADS  Google Scholar 

  51. Steinwachs, C.F., Kamenshchik, A.Y.: Non-minimal Higgs inflation and frame dependence in cosmology. arXiv:1301.5543

  52. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980)

    Article  ADS  MATH  Google Scholar 

  53. Subramanian, K.: The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 79, 076901 (2016)

    Article  ADS  Google Scholar 

  54. Sutton, D.R., Feng, C., Reichardt, C.L.: Current and future constraints on primordial magnetic fields. Astrophys. J. 846, 164 (2017)

    Article  ADS  Google Scholar 

  55. Synge, J.L.: Relativity: The General Theory. North Holland, Amsterdam (1955)

    MATH  Google Scholar 

  56. Tavecchio, F., Ghisellini, G., Foschini, L., Bonnoli, G., Ghirlanda, G., Coppi, P.: The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200. Mon. Not. R. Astron. Soc. 406, L70 (2010)

    ADS  Google Scholar 

  57. Taylor, A.M., Vovk, I., Neronov, A.: Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 529, A144 (2011)

    Article  ADS  Google Scholar 

  58. Turner, M.S., Widrow, L.M.: Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743 (1988)

    Article  ADS  Google Scholar 

  59. Vachaspati, T.: Progress on cosmological magnetic fields. arXiv:2010.10525v1 [astro-ph.CO] (2020)

  60. Vilchinskii, S., Sobol, O., Gorbar, E.V., Rudennok, I.: Magnetogenesis during inflation and preheating in the Starobinsky model. Phys. Rev. D 95, 083509 (2017)

    Article  ADS  Google Scholar 

  61. Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)

    Book  MATH  Google Scholar 

  62. Widrow, L.M.: Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is thankful to S. Vilchinskii, E.V. Gorbar, and O. Sobol for critical comments and useful discussions during the preparation of manuscript. The author is also thankful to O. Sobol for his assistance in plotting figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Kamarpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamarpour, M. Magnetogenesis in Higgs inflation. Gen Relativ Gravit 53, 53 (2021). https://doi.org/10.1007/s10714-021-02824-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02824-0

Keywords

Navigation