Skip to main content
Log in

Multidomain Galerkin-Collocation method: characteristic spherical collapse of scalar fields

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We initiate a systematic implementation of the spectral domain decomposition technique with the Galerkin-Collocation method in situations of interest such as the spherical collapse of a scalar field in the characteristic formulation. We discuss the transmission conditions at the interface of contiguous subdomains that are crucial for the domain decomposition technique for hyperbolic problems. We implemented codes with an arbitrary number of subdomains, and after validating them, we applied to the problem of critical collapse. With a modest resolution, we obtain the Choptuik’s scaling law and its oscillatory component due to the discrete self-similarity of the critical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grandclément, P., Novak, J.: Living Rev. Relativ. 12, 1 (2009)

    Article  ADS  Google Scholar 

  2. Canuto, C., Quarteroni, A., Hussaini, M.Y., Zang, T.A.: Spectral methods in fluid dynamics. Springer-Verlag, New York (1988)

    Book  MATH  Google Scholar 

  3. Gottlieb, D., Hesthaven, J.S.: Special issue on numerical analysis, vol. VII: partial differential equations. J. Comp. App. Math. 128, 1–2 (2001)

    Article  Google Scholar 

  4. Canuto, C., Quarteroni, A., Hussaini, M.Y., Zang, T.A.: Spectral methods - evolution to complex geometries and applications to fluid dynamic. Springer-Verlag, New York (2007)

    Book  MATH  Google Scholar 

  5. Orszag, S.: J. Comp. Phys. 37, 70 (1980)

    Article  ADS  Google Scholar 

  6. Kopriva, D.A.: Appl. Numer. Math. 2, 221 (1986)

    Article  MathSciNet  Google Scholar 

  7. Kopriva, D.A.: SIAM J. Sci. Sta. Comp. 10, 1–120 (1989)

    Article  Google Scholar 

  8. Faccioli, E., Maggio, F., Quarteroni, A., Tagliani, A.: Geophysics 61, 1160 (1996)

    Article  ADS  Google Scholar 

  9. Bonazzola, S., Gourgoulhon, E., Salgado, M., Marck, J.A.: Astron. Astrophys. 278, 421 (1993)

    ADS  Google Scholar 

  10. Pfeifer, H. P.: Initial data for black hole evolutions, Ph.D. thesis, arXiv:gr-qc/0510016 (2003)

  11. Ansorg, M.: Class. Quantum Grav. 24, S1 (2007)

    Article  ADS  Google Scholar 

  12. Spectral Einstein Code, https://www.black-holes.org/code/SpEC.html

  13. LORENE (Langage Objet pour la Relativité Numérique), http://www.lorene.obspm.fr

  14. Kidder, L.E., Scheel, M.A., Teukolsky, S.A.: Phys. Rev. D 62, 084032 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Szilágyi, B., Lindblom, L., Scheel, M.A.: Phys. Rev. D 80, 124010 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hemberger, D.A., Scheel, M.A., Kidder, L.E., Szilágyi, B., Lovelace, G., Taylor, N.W., Teukolsky, S.A.: Class. Quantum Grav. 30, 115001 (2013)

    Article  ADS  Google Scholar 

  17. Boyle, M. et al.: The SXS Collaboration catalog of binary black hole simulations, arXiv:1904.04831 (2019)

  18. Winicour, J.: Living Rev. Relativity 15, 2 (2012)

    Article  ADS  Google Scholar 

  19. de Oliveira, H.P., Rodrigues, E.L.: Phys. Rev. D 90, 124027 (2014)

    Article  ADS  Google Scholar 

  20. Barreto, W., Clemente, P.C.M., de Oliveira, H.P.: Phys. Rev. D 97, 104035 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Barreto, W., Clemente, P.C.M., de Oliveira, H.P.: Phys. Rev. D 97, 104035 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Barreto, W., Crespo, J.A., de Oliveira, H.P., Rodrigues, E.L.: Class. Quant. Grav. 36, 215011 (2019)

    Article  ADS  Google Scholar 

  23. Crespo, J.A., de Oliveira, H.P., Winicour, J.: Phys. Rev. D 100, 104017 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Arnowitt, R., Deser, S., Misner, C.W.: Republication of: the dynamics of general relativity. Gen. Relativ. Gravit. 40, 1997 (2008)

    Article  ADS  MATH  Google Scholar 

  25. van der Burg, M., Bondi, H., Metzner, A.: Proc. R. Soc. London Ser. A 269, 21 (1962)

    Article  ADS  Google Scholar 

  26. Gómez, R., Winicour, J.: J. Math. Phys. 33, 1445 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  27. Boyd, J.P.: Chebyshev and fourier spectral methods. Dover Publications, New York (2001)

    MATH  Google Scholar 

  28. Peyret, R.: Spectral methods for incompressible viscous flow. Springer-Verlag, New York (2002)

    Book  MATH  Google Scholar 

  29. Choptuik, M.W.: Phys. Rev. Lett. 70, 9 (1993)

    Article  ADS  Google Scholar 

  30. Cash, J.R., Karp, H.A.: Variable order Runge-Kutta method for initial value problems with rapidly varying righthand sides. ACM Trans. Math. Softw. 16, 201 (1990)

    Article  MATH  Google Scholar 

  31. Newman, E.T., Penrose, R.: Proc. R. Soc. London Ser. A 305, 175 (1968)

    Article  ADS  Google Scholar 

  32. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York (1972)

    MATH  Google Scholar 

  33. Gundlach, C., Martin-Garcia, J.M.: Living Rev. Relativ. 10, 5 (2007)

    Article  ADS  Google Scholar 

  34. Gundlach, C.: Phys. Rev. D 55, 695 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  35. Christodoulou, D.: Commun. Math. Phys. 109, 613 (1987)

    Article  ADS  Google Scholar 

  36. Rodrigues, E.L., de Oliveira, H.P.: Phys. Rev. D 82, 104023 (2010)

    Article  ADS  Google Scholar 

  37. Deppe, N., Kidder, L.E., Scheel, M.A., Teukolsky, S.A.: Phys. Rev. D 99, 024018 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. Hod, S., Piran, T.: Phys. Rev. D 55, 440 (1997)

    Article  ADS  Google Scholar 

  39. Purrer, M., Husa, S., Aichelburg, P.C.: Phys. Rev. D 71, 104005 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. A. acknowledges the financial support of the Brazilian agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). W. O. B. thanks to the Departamento de Apoio à Produção Científica e Tecnológica (DEPESQ) for the financial support, also to the Departamento de Física Teórica for the hospitality, both at the Universidade do Estado do Rio de Janeiro. H. P. O. thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant No. E-26/202.998/518 2016 Bolsas de Bancada de Projetos (BBP)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. O. Barreto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Basis functions

Appendix: Basis functions

We present the basis functions used in the spectral approximations of \(\varPhi , \beta \), and V established in the first and last subdomains. The basis functions for the scalar field \(\varPhi \) (cf. Eq. (17)) is

$$\begin{aligned} \psi _k^{(1)}(r)= & {} \frac{1}{2}\left( TL_{k+1}^{(1)}(r) + TL_{k}^{(1)}(r)\right) , \end{aligned}$$
(57)

where \(TL^{(1)}_k(r)\) with \(k=0,1,..,N_1\) are the rational Chebyshev polynomials defined in the first subdomain. The basis for the metric function \(\beta \) is

$$\begin{aligned} \chi _k^{(1)}(r) = \frac{1}{8}\bigg [\frac{(1+2k)}{3+2k}TL_{k+2}^{(1)}(r) +\frac{4(1+k)}{3+2k}TL_{k+1}^{(1)}(r) + TL_{k}^{(1)}(r)\bigg ]. \end{aligned}$$
(58)

Each of the above basis functions satisfies the condition (11). For the last subdomain, we have chosen the corresponding rational Chebyshev function as the basis for all spectral approximations of \(\varPhi , \beta \) and V.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcoforado, M.A., Barreto, W.O. & Oliveira, H.P.d. Multidomain Galerkin-Collocation method: characteristic spherical collapse of scalar fields. Gen Relativ Gravit 53, 42 (2021). https://doi.org/10.1007/s10714-021-02815-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02815-1

Navigation