Skip to main content
Log in

The Kerr–Newman–(anti-)de Sitter spacetime: Extremal configurations and electrogeodesics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study motion of charged test particles, or electrogeodesics, in the Kerr–Newman–(anti-)de Sitter spacetime. We focus on the equatorial plane and the axis of symmetry where the analysis is considerably simpler. The electric charge opens up the possibility of new types of trajectories, particularly stationary points where the particle can remain indefinitely. It also influences the stability of the orbits, which can be interesting from the point of view of observations. We review the basic properties of the spacetime—the structure of its horizons, the extremal cases, the possibility of over-extreme rotation, regions admitting closed timelike curves, and the turnaround radius, among other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. There is a typo in [9]: the inclusion of a non-zero cosmological constant in the Kerr–Newman solution does require the four-potential to be divided by \(\varXi (\varLambda )\).

  2. We generally prefer to keep \(\varLambda \) as a free parameter because, from the astrophysical point of view, its value is known and fixed for all black holes.

References

  1. Carter, B.: Black hole equilibrium states. In: DeWitt, B.S., DeWitt, C. (eds.) Black Holes (1972 Les Houches Lectures). Gordon and Breach, New York (1973)

    Google Scholar 

  2. Hagihara, Y.: Theory of the relativistic trajectories in a gravitational field of Schwarzschild. Jpn. J. Astron. Geophys. 8, 67 (1930)

    Google Scholar 

  3. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968). https://doi.org/10.1103/PhysRev.174.1559

    Article  ADS  MATH  Google Scholar 

  4. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1983)

    MATH  Google Scholar 

  5. Cebeci, H., Özdemir, N., Şentorun, S.: Motion of the charged test particles in Kerr–Newman–Taub-NUT spacetime and analytical solutions. Phys. Rev. D 93, 104031 (2016). https://doi.org/10.1103/PhysRevD.93.104031

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Soroushfar, S., Saffari, R., Kazempour, S., Grunau, S., Kunz, J.: Detailed study of geodesics in the Kerr–Newman–(A)dS spacetime and the rotating charged black hole spacetime in \(f(R)\) gravity. Phys. Rev. D 94, 024052 (2016). https://doi.org/10.1103/PhysRevD.94.024052

    Article  ADS  MathSciNet  Google Scholar 

  7. Hackmann, E., Xu, H.: Charged particle motion in Kerr–Newmann space-times. Phys. Rev. D 87(12), 124030 (2013). https://doi.org/10.1103/PhysRevD.87.124030

    Article  ADS  Google Scholar 

  8. Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977). https://doi.org/10.1103/PhysRevD.15.2738

    Article  ADS  MathSciNet  Google Scholar 

  9. Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  10. Aghanim, N., et al.: Planck 2018 results. VI. Cosmological parameters. https://arxiv.org/pdf/1807.06209.pdf (2018). Accessed 17 June 2019

  11. Lauer, T.R., et al.: The masses of nuclear black holes in luminous elliptical galaxies and implications for the space density of the most massive black holes. Astrophys. J. 662, 808–834 (2007). https://doi.org/10.1086/518223

    Article  ADS  Google Scholar 

  12. Veselý, J.: Charged particles in space-times with an electromagnetic field. Master’s thesis, Charles University, Prague. https://dspace.cuni.cz/bitstream/handle/20.500.11956/90577/DPTX_2015_1_11320_0_484776_0_170034.pdf (2017). Accessed 22 October 2018

  13. Cardoso, V., Gualtieri, L.: Testing the black hole ‘no-hair’ hypothesis. Class. Quant. Grav. 33(17), 174001 (2016). https://doi.org/10.1088/0264-9381/33/17/174001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Nielsen, A.B.: On the distribution of stellar-sized black hole spins. J. Phys. Conf. Ser. 716(1), 012002 (2016). https://doi.org/10.1088/1742-6596/716/1/012002

    Article  Google Scholar 

  15. Middleton, M.: Black hole spin: theory and observation, Chapter 3. In: Bambi, C. (ed.) Astrophysics of Black Holes: From Fundamental Aspects to Latest Developments, pp. 99–151. Springer, Berlin (2016)

    Chapter  Google Scholar 

  16. Gou, L., McClintock, J.E., Reid, M.J., Orosz, J.A., Steiner, J.F., Narayan, R., Xiang, J., Remillard, R.A., Arnaud, K.A., Davis, S.W.: The extreme spin of the black hole in Cygnus X-1. Astrophys. J. 742, 85 (2011). https://doi.org/10.1088/0004-637X/742/2/85

    Article  ADS  Google Scholar 

  17. Stuchlík, Z., Slaný, P.: Equatorial circular orbits in the Kerr–de Sitter spacetimes. Phys. Rev. D 69, 064001 (2004). https://doi.org/10.1103/PhysRevD.69.064001

    Article  ADS  MathSciNet  Google Scholar 

  18. Gibbons, G.W., Shellard, E.P.S., Rankin, S.J.: The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking’s Contributions to Physics. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  19. Monroe, H.: Are causality violations undesirable? Found. Phys. 38, 1065–1069 (2008). https://doi.org/10.1007/s10701-008-9254-9

    Article  ADS  MathSciNet  Google Scholar 

  20. Andreka, H., Nemeti, I., Wuthrich, C.: A Twist in the geometry of rotating black holes: seeking the cause of acausality. Gen. Relativ. Gravit. 40, 1809–1823 (2008). https://doi.org/10.1007/s10714-007-0577-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. de Felice, F., Calvani, M.: Causality violation in the Kerr metric. Gen. Relativ. Gravit. 10, 335–342 (1979). https://doi.org/10.1007/BF00759491

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. de Felice, F., Nobili, L., Calvani, M.: Charged singularities: the causality violation. J. Phys. A 13, 3635–3641 (1980). https://doi.org/10.1088/0305-4470/13/12/012

    Article  ADS  MathSciNet  Google Scholar 

  23. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, Boston (2000)

    MATH  Google Scholar 

  24. Hackmann, E., Lämmerzahl, C., Kagramanova, V., Kunz, J.: Analytical solution of the geodesic equation in Kerr–(anti) de Sitter space-times. Phys. Rev. D 81, 044020 (2010). https://doi.org/10.1103/PhysRevD.81.044020

    Article  ADS  MathSciNet  Google Scholar 

  25. Luongo, O., Quevedo, H.: Characterizing repulsive gravity with curvature eigenvalues. Phys. Rev. D 90(8), 084032 (2014). https://doi.org/10.1103/PhysRevD.90.084032

    Article  ADS  Google Scholar 

  26. Boshkayev, K., Gasperin, E., Gutiérrez-Piñeres, A.C., Quevedo, H., Toktarbay, S.: Motion of test particles in the field of a naked singularity. Phys. Rev. D 93(2), 024024 (2016). https://doi.org/10.1103/PhysRevD.93.024024

    Article  ADS  MathSciNet  Google Scholar 

  27. Stuchlík, Z., Hledík, S.: Equatorial photon motion in the Kerr–Newman spacetimes with a non-zero cosmological constant. Class. Quant. Grav. 17, 4541–4576 (2000). https://doi.org/10.1088/0264-9381/17/21/312

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Stuchlík, Z., Bao, G., Ostgaard, E., Hledík, S.: Kerr–Newman–de Sitter black holes with a restricted repulsive barrier of equatorial photon motion. Phys. Rev. D 58, 084003 (1998). https://doi.org/10.1103/PhysRevD.58.084003

    Article  ADS  MathSciNet  Google Scholar 

  29. Cunha, P.V.P., Herdeiro, C.A.R., Radu, E.: Fundamental photon orbits: black hole shadows and spacetime instabilities. Phys. Rev. D 96(2), 024039 (2017). https://doi.org/10.1103/PhysRevD.96.024039

    Article  ADS  Google Scholar 

  30. Hejda, F., Bičák, J.: Kinematic restrictions on particle collisions near extremal black holes: a unified picture. Phys. Rev. D 95(8), 084055 (2017). https://doi.org/10.1103/PhysRevD.95.084055

    Article  ADS  MathSciNet  Google Scholar 

  31. De Felice, F., Calvani, M.: Orbital and vortical motion in the Kerr metric. Nuovo Cim. B 10, 447–458 (1972)

    ADS  Google Scholar 

  32. Stuchlík, Z.: The motion of test particles in black-hole backgrounds with non-zero cosmological constant. Bull. Astron. Inst. Czech. 34, 129–149 (1983)

    ADS  MATH  Google Scholar 

  33. Bičák, J., Stuchlík, Z., Balek, V.: The motion of charged particles in the field of rotating charged black holes and naked singularities. Bull. Astron. Inst. Czech. 40, 65–92 (1989)

    ADS  MATH  Google Scholar 

  34. Cruz, N., Olivares, M., Villanueva, J.R.: The geodesic structure of the schwarzschild anti-de Sitter black hole. Class. Quant. Grav. 22, 1167–1190 (2005). https://doi.org/10.1088/0264-9381/22/6/016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Stuchlík, Z., Hledík, S.: Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes. Phys. Rev. D 60, 044006 (1999). https://doi.org/10.1103/PhysRevD.60.044006

    Article  ADS  MathSciNet  Google Scholar 

  36. Faraoni, V., Lapierre-Léonard, M., Prain, A.: Turnaround radius in an accelerated universe with quasi-local mass. J. Cosmol. Astropart. Phys. 2015(10), 013–013 (2015). https://doi.org/10.1088/1475-7516/2015/10/013

    Article  MathSciNet  Google Scholar 

  37. Giusti, A., Faraoni, V.: Turnaround size of non-spherical structures. Phys. Dark Univ. 26, 100353 (2019). https://doi.org/10.1016/j.dark.2019.100353

    Article  Google Scholar 

Download references

Acknowledgements

J.V. was supported by Charles University, Project GA UK 80918. M.Ž. acknowledges support by GACR 17-13525S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Žofka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselý, J., Žofka, M. The Kerr–Newman–(anti-)de Sitter spacetime: Extremal configurations and electrogeodesics. Gen Relativ Gravit 51, 156 (2019). https://doi.org/10.1007/s10714-019-2639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2639-6

Keywords

Navigation