Skip to main content
Log in

Hubble diagrams in the Jordan and Einstein frames

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Different models in cosmology generally predict different Hubble diagrams. Then, the comparison between the Hubble diagrams may be used as a way for distinguishing between different cosmological scenarios. But that is not always the case because there is no guarantee that two different models always have different Hubble diagrams. It may be possible for two physically-inequivalent models to have the same Hubble diagrams. In that case, the Hubble diagram cannot be used to differentiate between two models and it is necessary to find another way to distinguish between them. Therefore, the question of whether two different scenarios are distinguishable by using the Hubble diagrams is an important question which would not have an obvious answer. The Jordan and Einstein frames of f(R) theories of gravity are inequivalent, provided that the metricity condition holds in both frames. In the present paper it is argued that if the time-variation of particle masses in the Einstein frame is taken into consideration, the Hubble diagram derived practically from type Ia supernova surveys does not enable us to differentiate between these two frames. Nevertheless, we show that by waiting long enough to measure the change in Hubble diagram it is possible to differentiate between two frames. In other words, the Hubble diagram cannot be employed alone to differentiate between two frames but comparison between the rates of changes in Hubble diagrams can provide a way to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess, A.G., et al.: High-z Supernova Search Team, observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Supernova cosmology project, measurements of omega and lambda from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Eisenstein, D.J., et al.: (SDSS), Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  4. Astier, P., et al.: (The SNLS), The supernova legacy survey: measurement of \(\Omega _{M}\), \(\Omega _{\Lambda }\) and \(w\) from the first year data set. Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  5. Spergel, D.N., et al.: (WMAP), Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  6. Perivolaropoulos, L.: Accelerating universe: observational status and theoretical implications. arXiv:astro-ph/0601014

  7. Jassal, H., Bagla, J., Padmanabhan, T.: Observational constraints on low redshift evolution of dark energy: How consistent are different observations? Phys. Rev. D 72, 103503 (2005). [arXiv:astro-ph/0506748]

    Article  ADS  Google Scholar 

  8. Riess, A.G., et al.: Type ia supernova discoveries at \(z>1\) from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004). [arXiv:astro-ph/0402512]

    Article  ADS  Google Scholar 

  9. Cole, S., et al.: The 2dF Galaxy Redshift survey: power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. R. Astron. Soc. 362, 505 (2005). [arXiv:astro-ph/0501174]

    Article  ADS  Google Scholar 

  10. Bahcall, N.A., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: The cosmic triangle: revealing the state of the universe. Science 284, 1481 (1999)

    Article  ADS  Google Scholar 

  11. Carroll, S.M.: The cosmological constant. Living Rev. Relat. 4, 1 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Utiyama, R., DeWitt, B.S.: Renormalization of a classical gravitational field interacting with quantized matter fields. J. Math. Phys. 3, 608 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  13. Stelle, K.S.: Renormalization of higher-derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  14. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Spacetime. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  15. Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective Actions in Quantum Gravity. IOP Publishing, Bristol (1992)

    Google Scholar 

  16. Vilkovisky, G.A.: Effective action in quantum gravity. Class. Quantum Gravity 9, 895 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59–144 (2011). [arXiv:1011.0544]

    Article  ADS  MathSciNet  Google Scholar 

  18. Nojiri, Sh, Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4, 115–146 (2007). [arXiv:hep-th/0601213]

    Article  MathSciNet  Google Scholar 

  19. Nojiri, Sh, Odintsov, S.D., Oikonomou, V.K.: Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Rep. 692, 1–104 (2017). [arXiv:1705.11098]

    Article  ADS  MathSciNet  Google Scholar 

  20. Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  21. Faraoni, V.: Cosmology in Scalar–Tensor Gravity. Kluwer Academic, Dordrecht (2004)

    Book  Google Scholar 

  22. Dvali, G.R., Gabadadze, G., Porrati, M.: 4D gravity on a brane in 5D minkowski space. Phys. Lett. B 485, 208 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Maartens, R.: Brane-world gravity. Living Rev. Relat. 7, 7 (2004)

    Article  ADS  Google Scholar 

  24. Bekenstein, J.D.: Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509 (2004)

    Article  ADS  Google Scholar 

  25. Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010). [arXiv:0805.1726v2 [gr-qc]]

    Article  ADS  Google Scholar 

  27. Ruzmaikina, T.V., Ruzmaikin, A.A.: Quadratic corrections to the lagrangian density of the gravitational field and the singularity. Zh. Eksp. Teor. Fiz. 57, 680 (1969)

    ADS  Google Scholar 

  28. Ruzmaikina, T.V., Ruzmaikin, A.A.: Quadratic corrections to the lagrangian density of the gravitational field and the singularity. Sov. Phys. JETP 30, 372 (1970)

    ADS  Google Scholar 

  29. Buchdahl, H.A.: Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 150, 18 (1970)

    Article  ADS  Google Scholar 

  30. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99102 (1980)

    Article  Google Scholar 

  31. Schmidt, H.J.: Fourth order gravity: equations, history, and applications to cosmology. Int. J. Geom. Methods Mod. Phys. 4, 209248 (2007)

    Article  MathSciNet  Google Scholar 

  32. De Felice, A., Tsujikawa, Sh: f(R) theories. Living Rev. Relat. 13, 3 (2010). [arXiv:1002.4928 [gr-qc]]

    Article  ADS  Google Scholar 

  33. Capozziello, S., Nojiri, S., Odintsov, S.D., Troisi, A.: Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 639, 135–143 (2006). [arXiv:astro-ph/0604431]

    Article  ADS  Google Scholar 

  34. Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective Actions in Quantum Gravity. IOP Publishing, Bristol (1992)

    Google Scholar 

  35. Faraoni, V.: Matter instability in modified gravity. Phys. Rev. D 74, 104017 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. Woodard, R.P.: Avoiding dark energy with 1/R modifications of gravity. Lect. Notes Phys. 720, 403 (2007)

    Article  ADS  Google Scholar 

  37. Higgs, P.W.: Quadratic lagrangians and general relativity. Nuovo Cim. 11, 816 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  38. Whitt, B.: Fourth-order gravity as general relativity plus matter. Phys. Lett. B 145, 176 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  39. Magnano, G., Ferraris, M., Francaviglia, M.: Nonlinear gravitational Lagrangians. Gen. Relativ. Gravit. 19, 465 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  40. Jakubiec, A., Kijowski, J.: On the universality of Einstein equations. Gen. Relativ. Gravit. 19, 719 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  41. Jakubiec, A., Kijowski, J.: On theories of gravitation with nonlinear Lagrangians. Phys. Rev. D 37, 1406 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  42. Jakubiec, A., Kijowski, J.: On theories of gravitation with nonsymmetric connection. J. Math. Phys. 30, 1073 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  43. Magnano, G., Sokolowski, L.M.: On physical equivalence between nonlinear gravity theories. Phys. Rev. D 50, 5039–5059 (1994). [arXiv:gr-qc/9312008]

    Article  ADS  MathSciNet  Google Scholar 

  44. Barrow, J.D., Cotsakis, S.: Inflation and the conformal structure of higher-order gravity theories. Phys. Lett. B 214, 515 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  45. Teyssandier, P., Tourrenc, P.: The Cauchy problem for the \(R+R^2\) theories of gravity without torsion. J. Math. Phys. 24, 2793 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  46. Wands, D.: Extended gravity theories and the Einstein–Hilbert action. Class. Quantum Gravity 11, 269 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  47. Flanagan, E.E.: The conformal frame freedom in theories of gravitation. Class. Quantum Gravity 21, 3817 (2004). [arXiv:gr-qc/0403063v3]

    Article  ADS  Google Scholar 

  48. Sotiriou, T.P., Faraoni, V., Liberati, S.: Theory of gravitation theories: a no-progress report. Int. J. Mod. Phys. D 17, 399–423 (2008). [arXiv:0707.2748v2 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  49. Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  50. Wetterich, C.: A universe without expansion. Phys. Dark Univ. 2, 184 (2013). [arXiv:1303.6878]

    Article  Google Scholar 

  51. Faraoni, V., Nadeau, Sh: The (pseudo) issue of the conformal frame revisited. Phys. Rev. D 75, 023501 (2007). [arXiv:gr-qc/0612075]

    Article  ADS  MathSciNet  Google Scholar 

  52. Catena, R., Pietroni, M., Scarabello, L.: Einstein and Jordan frames reconciled: a frame-invariant approach to scalar-tensor cosmology. Phys. Rev. D 76, 084039 (2007). [arXiv:astro-ph/0604492v2]

    Article  ADS  MathSciNet  Google Scholar 

  53. Postma, M., Volponi, M.: Equivalence of the Einstein and Jordan frames. Phys. Rev. D 90, 103516 (2014). [arXiv:1407.6874v2]

    Article  ADS  Google Scholar 

  54. Chiba, T., Yamaguchi, M.: Conformal-frame (In)dependence of cosmological observations in scalar–tensor theory. J. Cosmol. Astropart. Phys. 10, 040 (2013). [arXiv:1308.1142]

    Article  ADS  MathSciNet  Google Scholar 

  55. Makino, N., Sasaki, M.: The density perturbation in the chaotic inflation with non-minimal coupling. Prog. Theor. Phys. 86, 103 (1991)

    Article  ADS  Google Scholar 

  56. Chakraborty, S., SenGupta, S.: Solving higher curvature gravity theories. Eur. Phys. J. C76(10), 552 (2016). [arXiv:1604.05301]

    Article  ADS  Google Scholar 

  57. Quiros, I., Garcia-Salcedo, R., Aguilar, J.E.M., Matos, T.: The conformal transformation’s controversy: What are we missing? Gen. Relativ. Gravit. 45, 489 (2013). [arXiv:1108.5857 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  58. Quiros, I., Garcia-Salcedo, R., Aguilar, J.E.M.: Conformal transformations and the conformal equivalence principle. arXiv:1108.2911 [gr-qc]

  59. Romero, C., Fonseca-Neto, J.B., Pucheu, M.L.: General relativity and weyl frames. arXiv:1106.5543 [gr-qc]

  60. Bezrukov, F., Shaposhnikov, M.: Standard model higgs boson mass from inflation: two loop analysis. JHEP 0907, 089 (2009). [arXiv:0904.1537 [hep-ph]]

    Article  ADS  Google Scholar 

  61. De Simone, A., Hertzberg, M.P., Wilczek, F.: Running inflation in the standard model. Phys. Lett. B 678, 1 (2009). [arXiv:0812.4946 [hep-ph]]

    Article  ADS  Google Scholar 

  62. Barvinsky, A.O., Kamenshchik, A.Y., Starobinsky, A.A.: Inflation scenario via the standard model higgs boson and LHC. JCAP 0811, 021 (2008). [arXiv:0809.2104 [hep-ph]]

    Article  ADS  Google Scholar 

  63. Briscese, F., Elizalde, E., Nojiri, S., Odintsov, S.D.: Phantom scalar dark energy as modified gravity: understanding the origin of the Big Rip singularity. Phys. Lett. B 646, 105 (2007). [arXiv:hep-th/0612220]

    Article  ADS  Google Scholar 

  64. White, J., Minamitsuji, M., Sasaki, M.: Curvature perturbation in multi-field inflation with non-minimal coupling. JCAP 1207, 039 (2012). [arXiv:1205.0656 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  65. Brans, C.H.: Nonlinear Lagrangians and the significance of the metric. Class. Quantum Gravity 5, L197 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  66. Faraoni, V., Gunzig, E., Nardone, P.: Conformal transformations in classical gravitational theories and in cosmology. Fund. Cosmic Phys. 20, 121 (1999). [arXiv:gr-qc/9811047v1]

    ADS  Google Scholar 

  67. Capozziello, S., Martin-Moruno, P., Rubano, C.: Physical non-equivalence of the Jordan and Einstein frames. Phys. Lett. B 689, 117121 (2010). [arXiv:1003.5394]

    Article  MathSciNet  Google Scholar 

  68. Faraoni, V., Gunzig, E.: Einstein frame or Jordan frame. Int. J. Theor. Phys. 38, 217–225 (1999). [arXiv:astro-ph/9910176]

    Article  MathSciNet  Google Scholar 

  69. Bahamonde, S., Odintsov, S.D., Oikonomou, V.K., Wright, M.: Correspondence of F(R) gravity singularities in Jordan and Einstein frames. Ann. Phys. 373, 96–114 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  70. Bahamonde, S., Odintsov, S.D., Oikonomou, V.K., Tretyakov, P.V.: Deceleration versus acceleration universe in different frames of F(R) gravity. Phys. Lett. B 766, 225–230 (2017). [arXiv:1701.02381]

    Article  ADS  Google Scholar 

  71. Brooker, D.J., Odintsov, S.D., Woodard, R.P.: Precision predictions for the primordial power spectra from f(R) models of inflation. Nucl. Phys. B 911, 318–337 (2016). [arXiv:1606.05879]

    Article  ADS  Google Scholar 

  72. Nayem, Sk, Sanyal, A.K.: Why scalar–tensor equivalent theories are not physically equivalent? Int. J. Mod. Phys. D 26, 1750162 (2017). [arXiv:1609.01824 [gr-qc]]

    Article  MathSciNet  Google Scholar 

  73. Karam, A., Pappas, T., Tamvakis, K.: Frame-(in)dependent higher-order inflationary observables in scalar–tensor theories. arXiv:1707.00984 [gr-qc]

  74. Cheng, Ta-Pei: Relativity, Gravitation and Cosmology, 2nd edn, pp. 199–200. Oxford University Press Inc., New York (2010)

    Google Scholar 

  75. Poisson, E.: The motion of point particles in curved spacetime. Living Rev. Relat. 7, 6 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Rashidi.

Appendix

Appendix

In this section we propose two practical methods to discern between inertial and freely-falling observers in the Einstein frame.

A simple experiment is similar to the twin paradox. Consider two spaceships. Assume one of them always keeps its own engine off and the other one turns on its engine and takes a large number of trips and each time comes back to the first. The first spaceship is a freely-falling observer because it is not acted on by a well-known non-gravitational forces, but the second one cannot be a freely-falling observer because its engine exerts a non-gravitational force on it. If for each trip the time measured by the first spaceship is longer than the time of the travelling spaceship, this freely-falling observer is an inertial observer because its world-line has the extremum length. But, if there is a trip in which the time measured by the second spaceship is longer than the first, the freely-falling spaceship cannot be an inertial observer. It can only occur in the Einstein frame and not in the Jordan frame.

Besides the above example, the following argument shows that the Universality of Free Fall can be violated for freely-falling observers in the Einstein frame. The Universality of Free Fall asserts that the relative accelerations of two freely-falling particles located at the same point always vanish independent of their masses and their relative velocities. Obviously, in General Relativity and also in the Jordan frame for freely-falling observers which follow geodesics the Universality of Free Fall and local Lorentz invariance are satisfied. We will argue that in the Einstein frame the relative accelerations of two freely-falling particles located at the same point can take non-vanishing values depending on their relative velocities. Therefore, the test of The Universality of Free Fall can reveal in which frames we are living. Equation (16) can be expressed as

$$\begin{aligned} {\tilde{u}}^{\mu }{\tilde{\nabla }}_{\mu }({\tilde{u}}_{\nu })= -\frac{\partial _{\nu }{\tilde{m}}}{{\tilde{m}}}-\frac{\partial _{\mu }{\tilde{m}}}{{\tilde{m}}}{\tilde{u}}^{\mu }{\tilde{u}}_{\nu }\equiv a_{\nu }. \end{aligned}$$
(58)

Contracting the left hand side with \({\tilde{u}}^{\nu }\) identically yields zero, i.e. \({\tilde{u}}^{\nu }a_{\nu }=0\). It is then possible to employ the Fermi–Walker (or Fermi normal) coordinates near each curve that satisfies the above equation [75]. We use \(x^{\mu }\) to denote the Fermi-Walker coordinates near the world-line of a freely-falling observer. Then the world-line of the observer can be described by \(d x^{0}=dt\) and \(x^{i}=0\), where dt is the proper time along the world-line and \(i=1,2,3\). In these coordinates, the metric near the world-line can be expressed as [75]

$$\begin{aligned} {\tilde{g}}_{00}= & {} -(1+2a_{i}(t)x^{i}+(a_{i}(t)x^{i})^2+{\tilde{R}}_{0i0j}(t)x^{i}x^{j}+{\mathcal {O}}(3)),\nonumber \\ {\tilde{g}}_{0i}= & {} -\frac{2}{3}{\tilde{R}}_{0jik}(t)x^{j}x^{k}+{\mathcal {O}}(3),\nonumber \\ {\tilde{g}}_{ij}= & {} \delta _{ij}-\frac{1}{3}{\tilde{R}}_{ikjm}(t)x^{k}x^{m}+{\mathcal {O}}(3), \end{aligned}$$
(59)

where \(a_{i}(t)\) are the spatial components of \(a_{\nu }\) on the world-line and \({\tilde{R}}_{\mu \nu \alpha \beta }(t)\) are the components of the Riemann tensor evaluated again on the world-line. It is no difficult to see that the metric reduces to \({\tilde{g}}_{00}=-1\) and \({\tilde{g}}_{ij}=\delta _{ij}\) on the world-line and the non-vanishing Christoffel symbols on the world-line are \({\tilde{\Gamma }}^{0}_{0i}={\tilde{\Gamma }}^{i}_{00}=a_{i}(t)\). Since the four-velocity \({\tilde{u}}^{\mu }\) on the world-line is (1, 0, 0, 0) we get

$$\begin{aligned} a_{i}(t)=-\frac{\partial _{i}{\tilde{m}}(x^0=t,x^i=0)}{{\tilde{m}}(x^0=t,x^i=0)}. \end{aligned}$$
(60)

Now consider another freely-falling test particle whose velocity relative to our observer does not vanish when its world-line intersects the world-line of the observer. Near the observer the world-line of this particle can be described by the Fermi-Walker coordinates as \(x^{\mu }(s)\), where s is the proper time along the particle world-line. The acceleration of the particle with respect to the observer at the intersection point is

$$\begin{aligned} A^{i}\equiv & {} \frac{d^2 x^i(s)}{(d x^0(s))^2}=\frac{d^2 x^i(s)}{d t^2}\nonumber \\= & {} -\left( \frac{d s}{d t}\right) ^2\frac{d^2t}{d s^2}\frac{d x^i}{d t}+\left( \frac{d s}{d t}\right) ^2\frac{d^2 x^i}{d s^2}. \end{aligned}$$
(61)

Assuming that the velocity of the particle relative to the observer is \(\frac{d x^i}{d t}=v^i\) at the intersection point, we have

$$\begin{aligned} \left( \frac{d s}{d t}\right) ^2=\left( \frac{d s}{d x^0}\right) ^2=1-v^2, \end{aligned}$$
(62)

where \(v^2=v^iv_{i}\). But, the world-line of the particle must also satisfy the equation of motion (58). Since the intersection point is also on the observer world-line and on this world-line the only non-vanishing Christoffel symbols are \({\tilde{\Gamma }}^{0}_{0i}={\tilde{\Gamma }}^{i}_{00}=a_{i}(t)\), Eq. (58) yields

$$\begin{aligned} \frac{d^2 t}{d s^2}=\frac{d^2 x^0}{d s^2}=- & {} 2a_{j}\frac{d x^0}{d s}\frac{d x^j}{d s}-\frac{d x^0}{d s}\frac{d x^{\mu }}{d s}\frac{\partial _{\mu } {\tilde{m}}}{{\tilde{m}}}\nonumber \\- & {} \frac{\partial ^0 {\tilde{m}}}{{\tilde{m}}}, \end{aligned}$$
(63)

and

$$\begin{aligned} \frac{d^2 x^i}{d s^2}=-a^i \left( \frac{d x^0}{d s}\right) ^2-\frac{d x^i}{d s}\frac{d x^{\mu }}{d s}\frac{\partial _{\mu } {\tilde{m}}}{{\tilde{m}}}-\frac{\partial ^i {\tilde{m}}}{{\tilde{m}}}. \end{aligned}$$
(64)

Taking Eqs. (60) and (62) into account, one can obtain

$$\begin{aligned} \frac{d^2 t}{d s^2}=-\frac{v^2}{1-v^2}\frac{\partial _{0} {\tilde{m}}}{{\tilde{m}}}+\frac{v^j}{1-v^2}\frac{\partial _{j} {\tilde{m}}}{{\tilde{m}}} , \end{aligned}$$
(65)

and

$$\begin{aligned} \frac{d^2 x^i}{d s^2}=-\frac{v^i}{1-v^2}\frac{\partial _{0} {\tilde{m}}}{{\tilde{m}}}+\left( \frac{v^2}{1-v^2}\delta ^{ij}-\frac{v^iv^j}{1-v^2}\right) \frac{\partial _{j} {\tilde{m}}}{{\tilde{m}}} . \end{aligned}$$
(66)

Substituting the relations (62), (65) and (66) in Eq. (61), we find

$$\begin{aligned} A^i=-(1-v^2)v^i\frac{\partial _{0} {\tilde{m}}}{{\tilde{m}}}+(v^2\delta ^{ij}-2v^i v^j)\frac{\partial _{j} {\tilde{m}}}{{\tilde{m}}}. \end{aligned}$$
(67)

It is not difficult to see that not only the acceleration of particle with respect to the observer does not vanish, but also freely-falling test particles, with different velocities relative to the freely-falling observer, have different accelerations with respect to the observer. It means that the Universality of Free Fall is violated for freely-falling observers in the Einstein frame; whereas, in the Jordan frame in contrast to the Einstein frame, the acceleration of all freely-falling particles is always zero with respect to a freely-falling observer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, R. Hubble diagrams in the Jordan and Einstein frames. Gen Relativ Gravit 51, 8 (2019). https://doi.org/10.1007/s10714-018-2490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2490-1

Keywords

Navigation