Skip to main content
Log in

Global and local horizon quantum mechanics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. A global gravitational radius operator can be introduced for a static and spherically symmetric quantum mechanical matter state by lifting the classical “Hamiltonian” constraint that relates the gravitational radius to the ADM mass, thus giving rise to a “horizon wave-function”. This minisuperspace-like formalism is shown here to be able to consistently describe also the local gravitational radius related to the Misner–Sharp mass function of the quantum source, provided its energy spectrum is determined by spatially localised modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For an attempt at including time evolution, see Refs. [16, 17].

  2. Let us remark this is the frame in which the Tolman–Oppenheimer–Volkoff equation is usually derived [19].

  3. We shall use units with \(c=1\), and the Newton constant \(G=\ell _{\mathrm{p}}/m_{\mathrm{p}}\), where \(\ell _{\mathrm{p}}\) and \({m_{\mathrm{p}}}\) are the Planck length and mass, respectively, and \(\hbar =\ell _{\mathrm{p}}\,m_{\mathrm{p}}\).

  4. Conversely, but perhaps of less interest, the second term would be useful in order to describe states in which matter can be approximated classically but gravity remains fully quantum.

  5. This point is purely technical in the global approach, but will become crucial in the local analysis.

  6. Note the integration is formally extended from zero to infinity, although it will be naturally limited to a smaller range if the spectral decomposition of the source is limited above and/or below.

  7. More technically, one can view \(4\,\pi \,\langle \, \Delta {\hat{r}}^2(r)\,\rangle \) as the uncertainty in the area of a sphere of coordinate radius r.

  8. Of course, they might still be obtained as the limit of suitable series.

References

  1. Oppenheimer, J.R., Snyder, H.: Phys. Rev. 56, 455 (1939)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975), Erratum: [Commun. Math. Phys. 46, 206 (1976)]

  3. Dirac, P.A.M.: Proc. R. Soc. Lond. A 246, 333 (1958)

    Article  ADS  Google Scholar 

  4. Bergmann, P.: Phys. Rev. 144, 1078 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  5. DeWitt, B.S.: Phys. Rev. 160, 1113–1148 (1967)

    Article  ADS  Google Scholar 

  6. Rovelli, C.: Living Rev. Rel. 1, 1 (1998)

    Article  MathSciNet  Google Scholar 

  7. Kuchar, K.V.: Phys. Rev. D 50, 3961 (1994) arXiv:gr-qc/9403003

  8. Hajicek, P., Kay, B.S., Kuchar, K.V.: Phys. Rev. D 46, 5439 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hajicek, P., Bicak, J.: Phys. Rev. D 56, 4706 (1997) arXiv:gr-qc/9706022

  10. Hajicek, P.: Nucl. Phys. B 603, 555 (2001) arXiv:hep-th/0007005

  11. Davidson, A., Yellin, B.: Phys. Lett. B 736, 267 (2014). arXiv:1404.5729 [gr-qc]

  12. Ashtekar, A., Krishnan, B.: Living Rev. Rel. 7, 10 (2004) arXiv:gr-qc/0407042

  13. Casadio, R.: Localised particles and fuzzy horizons: a tool for probing Quantum Black Holes. arXiv:1305.3195 [gr-qc]

  14. Casadio, R.: What is the Schwarzschild radius of a quantum mechanical particle? arXiv:1310.5452 [gr-qc]

  15. Casadio, R., Scardigli, F.: Eur. Phys. J. C 74, 2685 (2014). arXiv:1306.5298 [gr-qc]

  16. Casadio, R., Giugno, A., Micu, O.: Int. J. Mod. Phys. D 25, 1630006 (2016). arXiv:1512.04071 [hep-th]

  17. Casadio, R.: Eur. Phys. J. C 75, 160 (2015). arXiv:1411.5848 [gr-qc]

  18. Calmet, X., Casadio, R.: Eur. Phys. J. C 75, 445 (2015). arXiv:1509.02055 [hep-th]

  19. Stephani, H.: Relativity: An Introduction to Special and General Relativity. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  20. Casadio, R., Cavalcanti, R.T., Giugno, A., Mureika, J.: Phys. Lett. B 760, 36 (2016). arXiv:1509.09317 [gr-qc]

  21. Hossenfelder, S.: Living Rev. Rel. 16, 2 (2013). arXiv:1203.6191 [gr-qc]

  22. Casadio, R., Micu O., Nicolini, P.: Minimum length effects in black hole physics. arXiv:1405.1692 [hep-th]

  23. Casadio, R., Micu, O., Scardigli, F.: Phys. Lett. B 732, 105 (2014). arXiv:1311.5698 [hep-th]

  24. Casadio, R., Micu, O., Stojkovic, D.: Phys. Lett. B 747, 68 (2015). arXiv:1503.02858 [gr-qc]

  25. Casadio, R., Micu, O., Stojkovic, D.: JHEP 1505, 096 (2015). arXiv:1503.01888 [gr-qc]

  26. Dvali, G., Gomez, C.: JCAP 01, 023 (2014). arXiv:1312.4795 [hep-th]

  27. Dvali, G., Gomez, C.: Black Hole’s Information Group. arXiv:1307.7630

  28. Dvali, G., Gomez, C.: Eur. Phys. J. C 74, 2752 (2014). arXiv:1207.4059 [hep-th]

  29. Dvali, G., Gomez, C.: Phys. Lett. B 719, 419 (2013). arXiv:1203.6575 [hep-th]

  30. Dvali, G., Gomez, C.: Phys. Lett. B 716, 240 (2012). arXiv:1203.3372 [hep-th]

  31. Dvali, G., Gomez, C.: Fortsch. Phys. 61, 742 (2013). arXiv:1112.3359 [hep-th]

  32. Dvali, G., Gomez, C., Mukhanov, S.: Black Hole Masses are Quantized. arXiv:1106.5894 [hep-ph]

  33. Casadio, R., Giugno, A., Micu, O., Orlandi, A.: Phys. Rev. D 90, 084040 (2014). arXiv:1405.4192 [hep-th]

  34. Casadio, R., Giugno, A., Orlandi, A.: Phys. Rev. D 91, 124069 (2015). arXiv:1504.05356 [gr-qc]

  35. Casadio, R., Giugno, A., Micu, O., Orlandi, A.: Entropy 17, 6893 (2015). arXiv:1511.01279 [gr-qc]

  36. Casadio, R., Orlandi, A.: JHEP 1308, 025 (2013). arXiv:1302.7138 [hep-th]

  37. Mück, W., Pozzo, G.: JHEP 1405, 128 (2014). arXiv:1403.1422 [hep-th]

  38. Brout, R., Venturi, G.: Phys. Rev. D 39, 2436 (1989)

    Article  ADS  Google Scholar 

  39. Bertoni, C., Finelli, F., Venturi, G.: Class. Quant. Grav. 13, 2375 (1996) arXiv:gr-qc/9604011

  40. Casadio, R., Giugno, A., Giusti, A.: Phys. Lett. B 763, 337 (2016). arXiv:1606.04744 [hep-th]

  41. Frassino, A. M., Köppel, S., Nicolini, P.: Entropy 18, 181 (2016). arXiv:1604.03263 [gr-qc]

  42. Spallucci, E., Smailagic, A.: A particle-like description of Planckian black holes. arXiv:1605.05911 [hep-th]

  43. Spallucci, E., Smailagic, A.: A dynamical model for non-geometric quantum black holes. arXiv:1601.06004 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Casadio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casadio, R., Giugno, A. & Giusti, A. Global and local horizon quantum mechanics. Gen Relativ Gravit 49, 32 (2017). https://doi.org/10.1007/s10714-017-2198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2198-7

Keywords

Navigation