Skip to main content
Log in

Quantum corrections to the spectroscopy of a BTZ black hole via periodicity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Quantum corrections to the area spectrum and the entropy spectrum of a BTZ black hole are calculated by equaling the motion period of an outgoing wave coming from the quantum corrections of the semiclassical action to the period of gravitational system with respect to the Euclidean time. We find that the area spectrum and the entropy spectrum are independent of the properties of particles. Furthermore, in the presence of higher-order quantum corrections, the area spectrum is found to be corrected by inverse area terms while the entropy spectrum is found to have a universal form, \(\varDelta S_{BH}=2\pi \). Both results show that the entropy spectrum is independent of not only the BTZ black hole parameters but also the higher-order quantum corrections, which implies that the entropy spectrum is more natural than the area spectrum in quantum gravity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W.: Black hole explosions. Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bekenstein, J.D.: The quantum mass spectrum of the Kerr black hole. Lett. Nuovo. Cimento 11, 467 (1974)

    Google Scholar 

  4. Bekenstein, J. D.: Quantum black holes as atoms. arXiv/gr-qc:9710076 (1997).

  5. Bekenstein J. D.: Black holes: classical properties, thermodynamics and heuristic quantization. arXiv/gr-qc: 9808028 (1998)

  6. Hod, S.: Bohri’s correspondence principle and the area spectrum of quantum black holes. Phys. Rev. Lett. 81, 4293 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Maggiore, M.: Physical interpretation of the spectrum of black hole quasinormal modes. Phys. Rev. Lett. 100, 141301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Vagenas, E.C.: Area spectrum of rotating black holes via the new interpretation of quasinormal modes. JHEP. 0801, 073 (2008)

    Article  MathSciNet  Google Scholar 

  9. Medved, A.J.M.: On the Kerr quantum area spectrum. Class. Quant. Grav. 25, 205014 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Wei, S.W., Li, R., Liu, Y.X., Ren, J.R.: Quantization of black hole entropy from quasinormal modes. JHEP. 03, 076 (2009)

    MathSciNet  Google Scholar 

  11. Wei, S.W., Liu, Y.X., Yang, K., Zhong, Y.: Entropy\(/\)area spectra of the charged black hole from quasinormal modes. Phys. Rev. D 81, 104042 (2010)

    Article  ADS  Google Scholar 

  12. Ren, J.R., Song, S.X., Wei, S.W.: Area spectrum of d-dimensional large Schwarzschild-AdS black hole from asymptotic quasinormal modes. Commun. Theor. Phys. 53, 1097 (2010)

    Article  ADS  Google Scholar 

  13. Fernando, S.: Spinning dilaton black holes in 2+1 dimensions. Phys. Rev. D 79, 124026 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chen, D.Y., Yang, H.T., Zu, X.T.: Area spectra of near extremal black holes. Eur. Phys. J. C. 69, 289 (2010)

    Google Scholar 

  15. Lopez-Ortega, A.: Area spectrum of the d-dimensional Reissner-Nordström black hole in the small charge limit. Class. Quant. Grav. 28, 035009 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. Daghigh, R.G., Green, M.D., Mulligan, B.W.: Asymptotic spectrum of Kerr black holes in the small angular momentum limit. Phys. Rev. D 83, 044001 (2011)

    Article  ADS  Google Scholar 

  17. Ropotenko, K.: Quantization of the black hole area as quantization of the angular momentum component. Phys. Rev. D 80, 044022 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Banerjee, R., Majhi, B.R., Vagenas, E.C.: Quantum tunneling and black hole spectroscopy. Phys. Lett. B 686, 279 (2010)

    Google Scholar 

  19. Majhi, B.R., Vagenas, E.C.: Black hole spectroscopy via adiabatic invariance. Phys. Lett. B 701, 623 (2011)

    Google Scholar 

  20. Zeng, X.X., Liu, W.B.: Spectroscopy of a Reissner-Nordström black hole via an action variable. Eur. Phys. J. C 72, 1987 (2012)

    Article  ADS  Google Scholar 

  21. Liu, X.M., Zeng, X.X., Liu, W.B.: Spectroscopy of the rotating BTZ black hole via adiabatic invariance. Sci. China Phys. Mech. Astron. 55, 1747 (2012)

    Article  ADS  Google Scholar 

  22. Zeng, X.X., Liu, X.M., Liu, W.B.: Periodicity and area spectrum of black holes. Eur. Phys. J. C 72, 1967 (2012)

    Article  ADS  Google Scholar 

  23. Liu, X.M., Zeng, X.X., Zhou, S.W.: Area spectrum of BTZ black hole via periodicity. Sci. China. Phys. Mech. Astron. 56, 1627–1631 (2012)

    Article  ADS  Google Scholar 

  24. Chen, D.Y., Zeng, X.X.: The Schwarzschild black hole’s remnant via the Bohr-Sommerfeld quantization rule. Gen. Relativ. Gravit. 45, 631 (2013)

    Google Scholar 

  25. Zeng, X.X., Liu, X.M., Liu, W.B.: Area spectrum of black holes with quantum corrections via periodicity. Gen. Relativ. Gravit (2013)

  26. Setare, M.R.: Non-rotating BTZ black hole area spectrum from quasi-normal modes. Class. Quant. Grav. 21, 1453 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Kwon, Y., Nam, S.: Area spectra of the rotating BTZ black hole from quasinormal modes. Class. Quant. Grav. 27, 125007 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. Banados, M., Teitelboim, C., Zanelli, J.: Black hole in three-dimensional spacetime. Phys. Rev. Lett. 69, 1849 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Medved, A.J.M.: Radiation via tunnelling in the charged BTZ black hole. Class. Quant. Grav. 19, 589 (2002)

    Google Scholar 

  30. Hortacsu, M., Ozcelik, H.T., Yapiskan, B.: Properties of solutions in 2 + 1 dimensions. Gen. Relativ. Gravit 35, 1209 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Vagenas, E.C.: Semiclassical corrections to the Bekenstein-Hawking entropy of the BTZ black hole via self-gravitation. Phys. Lett. B 533, 302 (2002)

    Article  ADS  MATH  Google Scholar 

  32. Vagenas, E.C.: Two-dimensional dilatonic black holes and Hawking radiation. Mod. Phys. Lett. A 17, 609 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Liu, W.B.: New coordinates for BTZ black hole and Hawking radiation via tunnelling. Phys. Lett. B 634, 541 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. He, X.K., Liu, W.B.: Modified Hawking radiation in a BTZ black hole using Damour-Ruffini method. Phys. Lett. B 653, 330 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Wu, S.Q., Jiang, Q.Q.: Remarks on Hawking radiation as tunneling from the BTZ black holes. JHEP 03, 079 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhang, J.Y.: Entropy correction of BTZ black holes in a tunneling frame work. Sci. China Ser. G-Phys Mech. Astron. 53, 1427 (2010)

    Article  ADS  Google Scholar 

  37. Gibbons, G.W., Perry, M.J.: Black holes and thermal Green functions. Proc. R. Soc. Lond A358, 467 (1978)

    Google Scholar 

  38. Banerjee, R., Majhi, B.R.: Quantum tunneling beyond semiclassical approximation. JHEP 06, 095 (2008)

    Google Scholar 

  39. Modak, S.K.: Corrected entropy of BTZ black hole in tunneling approach. Phys. Lett. B 671, 167 (2009)

    Google Scholar 

  40. Carlip, S.: Quantum Gravity in (2+1) dimension, Cambridge University Press (1998).

  41. Carlip, S.: Logarithmic corrections to black hole entropy from the Cardy formula. Class. Quantum Grav. 17, 4175 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Govindarajan, T.R., Kaul, R.K., Suneeta, V.: Logarithmic correction to the Bekenstein-Hawking entropy of the BTZ black hole. Class. Quant. Grav. 18, 2877 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Jiang, Q.Q., Han, Y., Cai, X.: Quantum corrections and black hole spectroscopy. JHEP 08, 049 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  44. Majhi, B.R.: Fermion tunneling beyond semiclassical approximation. Phys. Rev. D 79, 044005 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant Nos. 11365008, 61364030). It is also supported by the Natural Science Fund of Education department of Hubei Province (Grant No. Q20131901) and the Natural Science Fund of Education department of Sichuan Province ( Grant No. 13ZA0103).We sincerely thank the editors and the anonymous reviewers for their hard, excellent, and careful work on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Xiong Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XM., Hu, XY., Li, Q. et al. Quantum corrections to the spectroscopy of a BTZ black hole via periodicity. Gen Relativ Gravit 46, 1627 (2014). https://doi.org/10.1007/s10714-013-1627-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-013-1627-5

Keywords

Navigation