Skip to main content
Log in

Mathematics of gravitational lensing: multiple imaging and magnification

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aazami A.B., Petters A.O.: A universal magnification theorem for higher-order caustic singularities. J. Math. Phys. 50, 032501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  2. Aazami A.B., Petters A.O.: A universal magnification theorem II. Generic caustics up to codimension five. J. Math. Phys. 50, 082501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  3. Aazami, A.B., Petters, A.O.: A universal magnification theorem III. Caustics beyond codimension five. J. Math. Phys. (2009), math-ph/0909.5235 (to appear)

  4. Abramowicz M.A., Carter B., Lasota J.P.: Optical reference geometry for stationary and static dynamics. Gen. Relativ. Gravit. 20, 1173 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Adler R., Taylor J.: Random Fields and Geometry. Wiley, London (1981)

    Google Scholar 

  6. Arnold V.I.: Normal forms for functions near degenerate critical points, the Weyl groups of A k , D k , E k and Lagrangian singularities. Func. Anal. Appl. 6, 254 (1973)

    Article  Google Scholar 

  7. Arnold V.I.: Evolution of singularities of potential flows in collision-free media and the metamorphoses of caustics in three-dimensional space. J. Sov. Math. 32, 229 (1986)

    Article  Google Scholar 

  8. Arnold V.I., Gusein-Zade S.M., Varchenko A.N.: Singularities of Differentiable Maps, vol. 1. Birkhäuser, Boston (1985)

    Google Scholar 

  9. Arnold V.I., Gusein-Zade S.M., Varchenko A.N.: Singularities of Differentiable Maps, vol. 2. Birkhäuser, Boston (1985)

    Google Scholar 

  10. Atiyah M.F., Bott R.: A Lefschetz fixed point formula for elliptic complexes: I. Appl. Ann. Math. 86, 374 (1967)

    MathSciNet  Google Scholar 

  11. Atiyah M.F., Bott R.: A Lefschetz fixed point formula for elliptic complexes: II. Appl. Ann. Math. 88, 451 (1968)

    MathSciNet  Google Scholar 

  12. Azais J.M., Wschebor M.: On the distribution of the maximum of a Gaussian field with d parameters. Ann. Appl. Probab. 15(1A), 254 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bayer J., Dyer C.C.: Maximal lensing: mass constraints on point lens configurations. Gen. Relativ. Gravit. 39, 1413 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Blandford R.D.: Gravitational lenses. Q. J. R. Astron. Soc. 31, 305 (1990)

    ADS  Google Scholar 

  15. Blandford R., Narayan R.: Fermat’s principle, caustics, and the classification of gravitational lens images. Astrophys. J. 310, 568 (1986)

    Article  ADS  Google Scholar 

  16. Burke W.: Multiple gravitational imaging by distributed masses. Astrophys. J. Lett. 244, L1 (1981)

    Article  ADS  Google Scholar 

  17. Castrigiano D., Hayes S.: Catastrophe Theory. Addison-Wesley, Reading (2004)

    MATH  Google Scholar 

  18. Chiba M.: Probing dark matter substructure in lens galaxies. Astrophys. J. 565, 17 (2002)

    Article  ADS  Google Scholar 

  19. Dalal N.: The magnification invariant of simple galaxy lens models. Astrophys. J. 509, 13 (1998)

    Article  ADS  Google Scholar 

  20. Dalal N., Rabin J.M.: Magnification relations in gravitational lensing via multidimensional residue integrals. J. Math. Phys. 42, 1818 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Ehlers J., Newman E.T.: The theory of caustics and wave front singularities with physical applications. J. Math. Phys. 41, 3344 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Evans N.W., Hunter C.: Lensing properties of cored galaxy models. Astrophys. J. 575, 68 (2002)

    Article  ADS  Google Scholar 

  23. Evans N.W., Witt H.J.: Are there sextuplet and octuplet image systems?. Mon. Not. R. Astron. Soc. 327, 1260 (2001)

    Article  ADS  Google Scholar 

  24. Frankel T.: Gravitational Curvature: An Introduction to Einstein’s Theory. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  25. Friedrich H., Stewart M.J.: Characteristic initial data and wavefront singularities in general relativity. Proc. R. Soc. Lond. A 385, 345 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Forrester P.J., Honner G.: Exact statistical properties of the zeros of complex random polynomials. J. Phys. A Math. Gen. 32, 2961 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Giannoni F., Lombardi M.: Gravitational lenses: odd or even images?. Class. Quantum Grav. 16, 1 (1999)

    MathSciNet  ADS  Google Scholar 

  28. Giannoni F., Masiello A., Piccione P.: A Morse theory for light rays on stably causal Lorentzian manifolds. Ann. Inst. H. Poincaré Phys. Theor. 69, 359 (1998)

    MATH  MathSciNet  Google Scholar 

  29. Gibbons G.W.: No glory in cosmic string theory. Phys. Lett. B 308, 237 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  30. Gibbons G.W., Herdeiro C.A.R., Warnick C., Werner M.C.: Stationary metrics and optical Zermelo–Randers–Finsler geometry. Phys. Rev. D 79, 044022 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. Gibbons G.W., Warnick C.M.: Universal properties of the near-horizon optical geometry. Phys. Rev. D 79, 064031 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. Gibbons G.W., Werner M.C.: Applications of the Gauss–Bonnet theorem to gravitational lensing. Class. Quantum Grav. 25, 235009 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  33. Gilmore R.: Catastrophe Theory for Scientists and Engineers. Dover, New York (1981)

    MATH  Google Scholar 

  34. Golubitsky M., Guillemin V.: Stable Mappings and Their Singularities. Springer, Berlin (1973)

    MATH  Google Scholar 

  35. Gottlieb D.H.: A gravitational lens need not produce an odd number of images. J. Math. Phys. 35, 5507 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Granot J., Schechter P.L., Wambsganss J.: The mean number of extra microimage pairs for macrolensed quasars. Astrophys. J. 583, 575 (2003)

    Article  ADS  Google Scholar 

  37. Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley, New York (1994)

    MATH  Google Scholar 

  38. Hunter C., Evans N.W.: Lensing properties of scale-free galaxies. Astrophys. J. 554, 1227 (2001)

    Article  ADS  Google Scholar 

  39. Katz N., Balbus S., Paczyński B.: Random scattering approach to gravitational microlensing. Astrophys. J. 306, 2 (1986)

    Article  ADS  Google Scholar 

  40. Keeton, C.R.: Gravitational lensing with stochastic substructure: Effects of the clump mass function and spatial distribution. http://xxx.lanl.gov/abs/0908.3001 (2009)

  41. Keeton C., Gaudi S., Petters A.O.: Identifying lenses with small-scale structure. I. Cusp lenses. Astrophys. J. 598, 138 (2003)

    Article  ADS  Google Scholar 

  42. Keeton C., Gaudi S., Petters A.O.: Identifying lenses with small-scale structure. II. Fold lenses. Astrophys. J. 635, 35 (2005)

    Article  ADS  Google Scholar 

  43. Khavinson D., Neumann G.: On the number of zeros of certain rational harmonic functions. Proc. Am. Math. Soc. 134, 1077 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kovner I.: Fermat principle in arbitrary gravitational fields. Astrophys. J. 351, 114 (1990)

    Article  ADS  Google Scholar 

  45. Li W.V., Wei A.: On the expected number of zeros of random harmonic polynomials. Proc. AMS 137, 195 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. Low R.: Stable singularities of wave-fronts in general relativity. J. Math. Phys. 39, 3332 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Majthay A.: Foundations of Catastrophe Theory. Pitman, Boston (1985)

    MATH  Google Scholar 

  48. Mao S., Petters A.O., Witt H.: Properties of point masses on a regular polygon and the problem of maximum number of images. In: Piran, T. (eds) Proceedings of the Eighth Marcel Grossman Meeting on General Relativity, World Scientific, Singapore (1997)

    Google Scholar 

  49. Mao S., Schneider P.: Evidence for substructure in lens galaxies?. Mon. Not. R. Astron. Soc. 295, 587 (1998)

    Article  ADS  Google Scholar 

  50. McKenzie R.H.: A gravitational lens produces an odd number of images. J. Math. Phys. 26, 1592 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. Metcalf R.B., Madau P.: Compound gravitational lensing as a probe of dark matter substructure within galaxy halos. Astrophys. J. 563, 9 (2001)

    Article  ADS  Google Scholar 

  52. Milnor J.: Dynamics in One Complex Variable. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  53. Narasimha D., Subramanian K.: ‘Missing image’ in gravitational lens systems?. Nature 310, 112 (1986)

    Google Scholar 

  54. Nityananda R., Ostriker J.P.: Gravitational lensing by stars in a galaxy halo—theory of combined weak and strong scattering. J. Astrophys. Astron. 5, 235 (1984)

    Article  ADS  Google Scholar 

  55. Orban de Xivry, G., Marshall, P.: An atlas of predicted exotic gravitational lenses. astro-ph/0904.1454 (2009)

  56. Padmanabhan T., Subramanian K.: The focusing equation, caustics and the condition for multiple imaging by thick gravitational lenses. Mon. Not. R. Astron. Soc. 233, 265 (1988)

    ADS  Google Scholar 

  57. Perlick V.: On Fermat’s principle in general relativity: I. The general case. Class. Quantum Grav. 7, 1319 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. Perlick V.: On Fermat’s principle in general relativity: II. The conformally stationary case. Class. Quantum Grav. 7, 1849 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. Perlick V.: Infinite dimensional Morse theory and Fermat’s principle in general relativity I. J. Math. Phys. 36, 6915 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. Perlick V.: Criteria for multiple imaging in Lorentzian manifolds. Class. Quantum Grav. 13, 529 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  61. Perlick V.: Global properties of gravitational lens maps in a Lorentzian manifold setting. Commun. Math. Phys. 220, 403 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. Perlick V.: Ray Optics, Fermat’s Principle, and Applications to General Relativity. Springer, Berlin (2000)

    MATH  Google Scholar 

  63. Petters, A.O.: Singularities in gravitational microlensing. Ph.D. Thesis, MIT, Department of Mathematics (1991)

  64. Petters A.O.: Morse theory and gravitational microlensing. J. Math. Phys. 33, 1915 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  65. Petters A.O.: Multiplane gravitational lensing. I. Morse theory and image counting. J. Math. Phys. 36, 4263 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. Petters A.O.: Arnold’s singularity theory and gravitational lensing. J. Math. Phys. 33, 3555 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  67. Petters A.O.: Multiplane gravitational lensing III: upper bound on number of images. J. Math. Phys. 38, 1605 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. Petters A.O., Levine H., Wambsganss J.: Singularitiy Theory and Gravitational Lensing. Birkäuser, Boston (2001)

    Google Scholar 

  69. Petters A.O., Rider B., Teguia A.M.: A mathematical theory of stochastic microlensing I. Random time delay functions and lensing maps. J. Math. Phys. 50, 072503 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  70. Petters, A.O., Rider, B., Teguia, A.M.: A mathematical theory of stochastic microlensing II. Random images, shear, and the Kac-Rice formula, to appear in J. Math. Phys. (2009), astro-ph/0807.4984v2

  71. Petters A.O., Wicklin F.W.: Fixed points due to gravitational lenses. J. Math. Phys. 39, 1011 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  72. Poston T., Stewart I.: Catastrophe Theory and its Applications. Dover, New York (1978)

    MATH  Google Scholar 

  73. Rhie S.H.: Infimum microlensing amplification of the maximum number of images of n-point lens systems. Astrophys. J. 484, 67 (1997)

    Article  ADS  Google Scholar 

  74. Rhie, S.H.: n-point gravitational lenses with 5(n−1) images. astro-ph/0305166 (2003)

  75. Renn J., Sauer T., Stachel J.: The origin of gravitational lensing: a postscipt to Einstein’s 1936 Science Paper. Science 275, 184 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  76. Schechter P.L., Wambsganss J.: Quasar microlensing at high magnification and the role of dark matter: enhanced fluctuations and suppressed saddle points. Astrophys. J. 580, 685 (2002)

    Article  ADS  Google Scholar 

  77. Schneider P., Ehlers J., Falco E.E.: Gravitational Lenses. Springer, Berlin (1992)

    Google Scholar 

  78. Schneider P., Weiss A.: The two-point mass lens: detailed investigation of a special asymmetric gravitational lens. Astron. Astrophys. 164, 237 (1986)

    ADS  Google Scholar 

  79. Schneider P., Weiss A.: The gravitational lens equation near cusps. Astron. Astrophys. 260, 1 (1992)

    MathSciNet  ADS  Google Scholar 

  80. Shin E.M., Evans N.W.: The Milky Way Galaxy as a strong gravitational lens. Mon. Not. R. Astron. Soc. 374, 1427 (2007)

    Article  ADS  Google Scholar 

  81. Shub M., Smale S.: Complexity of Bezout’s theorem. II. Volumes and Probabilities, Computational Algebraic Geometry, Nice (1992), Progress in Mathematics, vol. 109. Birkhäuser, Boston (1993)

    Google Scholar 

  82. Sodin M., Tsirelson B.: Random complex zeroes, I. Asymptotic normality. Israel J. Math. 144, 125 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  83. Sodin M., Tsirelson B.: Random complex zeroes, II. Perturbed lattice. Israel J. Math. 152, 105 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  84. Sodin M., Tsirelson B.: Random complex zeroes, III. Decay of the hole probability. Israel J. Math. 147, 371 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  85. Subramanian K., Cowling S.: On local conditions for multiple imaging by bounded, smooth gravitational lenses. Mon. Not. R. Astron. Soc. 219, 333 (1986)

    ADS  Google Scholar 

  86. Wambsganss J., Witt H.J., Schneider P.: Gravitational microlensing - powerful combination of ray-shooting and parametric representation of caustics. Astron. Astrophys. 258, 591 (1992)

    ADS  Google Scholar 

  87. Werner M.C.: A Lefschetz fixed point theorem in gravitational lensing. J. Math. Phys. 48, 052501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  88. Werner M.C.: Geometry of universal magnification invariants. J. Math. Phys. 50, 082504 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  89. Witt H.: Investigation of high amplification events in light curves of gravitationally lensed quasars. Astron. Astrophys. 236, 311 (1990)

    ADS  Google Scholar 

  90. Witt H.J., Mao S.: On the minimum magnification between caustic crossings for microlensing by binary and multiple Stars. Astrophys. J. Lett. 447, 105 (1995)

    Article  ADS  Google Scholar 

  91. Witt H.J., Mao S.: On the magnification relations in quadruple lenses: a moment approach. Mon. Not. R. Astron. Soc. 311, 689 (2000)

    Article  ADS  Google Scholar 

  92. Zakharov A.: On the magnification of gravitational lens images near cusps. Astron. Astrophys. 293, 1 (1995)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Werner.

Additional information

A. O. Petters acknowledges the partial support of NSF grant DMS-0707003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petters, A.O., Werner, M.C. Mathematics of gravitational lensing: multiple imaging and magnification. Gen Relativ Gravit 42, 2011–2046 (2010). https://doi.org/10.1007/s10714-010-0968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-0968-6

Keywords

Navigation