Skip to main content
Log in

Brane cosmology and motion of test particles in five-dimensional warped product spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the “braneworld scenario” ordinary standard model matter and non-gravitational fields are confined by some trapping mechanism to the 4-dimensional universe constituting the D3-branes which are embedded in a (4 + n)-dimensional manifold referred to as the ‘bulk’ (n being the number of extra dimensions). The notion of particle confinement is necessary for theories with non-compact extra dimensions, otherwise, the particles would escape from our 4-dimensional world along unseen directions. In this paper, we have considered a five-dimensional warped product space-time having an exponential warping function which depends both on time as well as on the extra coordinates and a non-compact fifth dimension. Assuming that the lapse function may either be a constant or a function of both time and of the extra coordinates, we have studied the nature of the geodesics of test particles and photons and have analyzed the conditions of stability in this geometrical framework. We have also discussed the possible cosmology of the corresponding (3 + 1)-dimensional hypersurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaluza, T.: Zum Unitätsproblem der Physik. Sitz. Preuss. Akad. Wiss. Phys. Math. K1, 966 (1921) [English translation: De Sabbata, V., Schmutzer, E. (eds.): Unified field theories of more than four dimensions. In: Proceedings of International School of Cosmology and Gravitation (Erice). World Scientific, Singapore (1983)]

  2. Joseph D.W.: Phys. Rev. 126, 319 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Akama K.: Lect. Notes Phys. 176, 267 (1982)

    Article  ADS  Google Scholar 

  4. Visser M.: Phys. Lett. 159B, 22 (1985)

    MathSciNet  ADS  Google Scholar 

  5. Gibbons G.W., Wiltshire D.L.: Nucl. Phys. B 287, 717 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  6. Wesson P.S., Ponce de Leon J.: J. Math. Phys. 33, 3883 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Arkani-Hamed N., Dimopoulos S., Dvali G.: Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  8. Antoniadis I., Arkani-Hamed N., Dimopoulos S., Dvali G.: Phys. Lett. B 436, 257 (1998)

    Article  ADS  Google Scholar 

  9. Arkani-Hamed N., Dimopoulos S., Dvali G.: Phys. Rev. D 59, 086004 (1999)

    Article  ADS  Google Scholar 

  10. Randall L., Sundrum R.: Phys. Rev. Lett. 83, 3370 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Randall L., Sundrum R.: Phys. Rev. Lett. 83, 4690 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Anderson, E., Tavakol, R.: gr-qc/0509055v2

  13. Rubakov V.A.: Phys. Usp. 44, 871 (2001) hep-ph/0104152

    Article  ADS  Google Scholar 

  14. Dahia F., Romero C.: Phys. Lett. B 51, 232 (2007)

    MathSciNet  ADS  Google Scholar 

  15. Dahia F., Gomez G.A.T., Romero C.: J. Math. Phys. 49, 102501 (2008) 0711.2754v1 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  16. Felder G.N., Frolov A., Kofman L.: Class. Quant. Grav. 19, 2983 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Dahia F., Romero C., da Silva L.F.P., Tavakol R.: J. Math. Phys. 48, 072501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. Dahia F., Romero C., da Silva L.F.P., Tavakol R.: Gen. Relativ. Gravit. 40, 1341 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Seahra S.S., Wesson P.S.: Class. Quant. Grav. 20, 1321 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Seahra S.S.: Phys. Rev. D 68, 104027 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  21. Youm D.: Mod. Phys. Lett. A 16, 2371 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Eisenhart L.P.: Riemannian Geometry, pp. 306. Princeton University Press, Princeton (1949)

    MATH  Google Scholar 

  23. Shiromizu T., Maeda K., Sasaki M.: Phys. Rev. D 62, 024012 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  24. Ida D.: JHEP 09, 014 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  25. Mukhoyama S., Shiromizu T., Maeda K.: Phys. Rev. D 62, 024028 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  26. Maartens, R.: Brane-World Gravity, Living Rev. Relativity 7, (2004). http://www.livingreviews.org/lrr-2004-7

  27. Bishop R.L., ÓNeill B.O.: Trans. Am. Math. Soc. 145, 1 (1969)

    Article  MATH  Google Scholar 

  28. Carot J., da Costa J.: Class. Quantum Grav. 10, 461 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Mashhoon B., Liu H., Wesson P.S.: Phys. Lett. B 331, 305 (1994)

    Article  ADS  Google Scholar 

  30. Wesson P.S., Mashhoon B., Liu H.: Mod. Phys. Lett. A 12, 2309 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Wesson P.S.: Space-Time-Matter. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  32. Wesson P.S.: Gen. Relativ. Gravit. 16, 193 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  33. Ponce de Leon J.: J. Math. Phys. 20, 539 (1988)

    MathSciNet  Google Scholar 

  34. Wesson P.S.: Astrophys. J. 394, 19 (1992)

    Article  ADS  Google Scholar 

  35. Ponce de Leon J.: Gen. Relativ. Gravit. 36, 1335 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Binetruy P., Deffayet C., Langlois D.: Nucl. Phys. B 565, 269 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Binetruy P., Deffayet C., Ellwanger U., Langlois D.: Phys. Lett. B 477, 285 (2000)

    Article  ADS  Google Scholar 

  38. Wainwright J., Ellis G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  39. Ross S.L.: Differential Equations. Wiley, New York (1984)

    MATH  Google Scholar 

  40. Lakshmanan M., Rajasekhar S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer (India) Private Limited, New Delhi (2005)

    Google Scholar 

  41. Fischer, A.E., Moncrief, V.: Class. Quantum Grav. 18, 4493 (2001). http://www.math.ucsc.edu/faculty/Publications/Fischer/Nonautonomous.pdf

  42. Lake K., Musgrave P.J.: GRTensor. Queen’s University, Kingston (2003)

    Google Scholar 

  43. Gremm M.: Phys. Lett. B 478, 434 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarbari Guha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guha, S., Chakraborty, S. Brane cosmology and motion of test particles in five-dimensional warped product spacetimes. Gen Relativ Gravit 42, 1739–1754 (2010). https://doi.org/10.1007/s10714-010-0945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-0945-0

Keywords

Navigation