Skip to main content
Log in

Phantom expansion with non-linear Schrödinger-type formulation of scalar field cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We describe non-flat standard Friedmann cosmology of canonical scalar field with barotropic fluid in form of non-linear Schrödinger-type (NLS) formulation in which all cosmological dynamical quantities are expressed in term of Schrödinger quantities as similar to those in time-independent quantum mechanics. We assume the expansion to be superfast, i.e. phantom expansion. We report all Schrödinger-analogous quantities to scalar field cosmology. Effective equation of state coefficient is analyzed and illustrated. We show that in a non-flat universe, there is no fixed w eff value for the phantom divide. In a non-flat universe, even w eff > −1, the expansion can be phantom. Moreover, in open universe, phantom expansion can happen even with w eff > 0. We also report scalar field exact solutions within frameworks of the Friedmann formulation and the NLS formulation in non-flat universe cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masi S. et al.: Prog. Part. Nucl. Phys. 48, 243 (2002)

    Article  ADS  Google Scholar 

  2. Bennett C.L. et al.: Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  3. WMAP Collab. (Spergel, D.N., et al.): Astrophys. J. Suppl. 148, 175 (2003)

  4. SDSS Collab. (Scranton, R., et al.): arXiv: astro-ph/0307335

  5. Supernova Search Team Collab. (Riess, A.G., et al.), Astron. J. 116, 1009 (1998)

    Google Scholar 

  6. Supernova Cosmology Project Collab. (Perlmutter, S., et al.): Astrophys. J. 517, 565 (1999)

    Google Scholar 

  7. Riess, A.G.: arXiv: astro-ph/9908237

  8. The Supernova Cosmology Project Collab. (Goldhaber, G., et al.): arXiv: astro-ph/0104382

  9. Supernova Search Team Collab. (Tonry, J.L., et al.): Astrophys. J. 594, 1 (2003)

    Google Scholar 

  10. Supernova Search Team Collab. (Riess, A.G. et al.): Astrophys. J. 607, 665 (2004)

    Google Scholar 

  11. Riess A.G. et al.: Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  12. SNLS Collab. (Astier, P., et al.): Astron. Astrophys. 447, 31 (2006)

  13. Kazanas D.: Astrophys. J. 241, L59 (1980)

    Article  ADS  Google Scholar 

  14. Starobinsky A.A.: Phys. Lett. B. 91, 99 (1980)

    Article  ADS  Google Scholar 

  15. Guth A.H.: Phys. Rev. D. 23, 347 (1981)

    Article  ADS  Google Scholar 

  16. Sato K.: Mon. Not. Roy. Astro. Soc. 195, 467 (1981)

    ADS  Google Scholar 

  17. Albrecht A., Steinhardt P.J.: Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  18. Linde A.D.: Phys. Lett. B. 108, 389 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  19. Nojiri S., Odintsov S.D.: Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Padmanabhan T.: Curr. Sci. 88, 1057 (2005)

    ADS  Google Scholar 

  21. Copeland E.J., Sami M., Tsujikawa S.: Int. J. Mod. Phys. 15, 1753 (2006)

    MATH  MathSciNet  ADS  Google Scholar 

  22. Padmanabhan, T.: Dark energy: mystery of the millennium. In: Alimi, J.-M., Füzfa, A. (eds.) AIP Conference Proceedings of Albert Einstein’s Century International Conference, vol. 861, p. 179. AIP, New York (2006)

  23. Hawkins R.M., Lidsey J.E.: Phys. Rev. D. 66, 023523 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  24. Williams F.L., Kevrekidis P.G.: Class. Quant. Grav. 20, L177 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Lidsey J.E.: Class. Quant. Grav. 21, 777 (2004)

    Article  MATH  ADS  Google Scholar 

  26. Williams, F.L., Kevrekidis, P.G., Christodoulakis, T., Helias, C., Papadopoulos, G.O., Grammenos, T.: On 3+1 dimensional scalar field cosmologies. In: Trends in Gen. Rel. and Quant. Cosmol., p. 37. Nova Science Pub., (2006)

  27. Kamenshchik, A., Luzzi, M., Venturi, G.: arXiv: math-ph/0506017

  28. Williams F.L.: Int. J. Mod. Phys. A. 20, 2481 (2005)

    Article  MATH  ADS  Google Scholar 

  29. D’Ambroise J., Williams F.L.: Int. J. Pure Appl. Maths. 34, 117 (2007)

    MATH  MathSciNet  Google Scholar 

  30. Gumjudpai B.: Astropart. Phys. 30, 186 (2008)

    Article  ADS  Google Scholar 

  31. Gumjudpai B.: Gen. Rel. Grav. 41, 249 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Gumjudpai B.: J. Cosmol. Astropart. Phys. 0809, 028 (2008)

    Article  ADS  Google Scholar 

  33. Melchiorri A., Mersini-Houghton L., Odman C.J., Trodden M.: Phys. Rev. D. 68, 043509 (2003)

    Article  ADS  Google Scholar 

  34. Corasaniti P.S., Kunz M., Parkinson D., Copeland E.J., Bassett B.A.: Phys. Rev. D. 70, 083006 (2004)

    Article  ADS  Google Scholar 

  35. Alam U., Sahni V., Saini T.D., Starobinsky A.A.: Mon. Not. Roy. Astron. Soc. 354, 275 (2004)

    Article  ADS  Google Scholar 

  36. WMAP Collab. (Spergel, D.N., et al.): Astrophys. J. Suppl. 170, 377 (2007)

  37. ESSENCE Collab. (Wood-Vasey, W.M., et al.): Astrophys. J. 666, 694 (2007)

  38. WMAP Collab. (Hinshaw, G., et al.): arXiv:0803.0732 [astro-ph]

  39. WMAP Collab. (Dunkley, J., et al.): arXiv:0803.0586 [astro-ph]

  40. Percival W.J., Cole S., Eisenstein D.J., Nichol R.C., Peacock J.A., Pope A.C., Szalay A.S.: Mon. Not. Roy. Astron. Soc. 381, 1053 (2007)

    Article  ADS  Google Scholar 

  41. WMAP Collab. (Komatsu, E., et al.): arXiv:0803.0547 [astro-ph] (version 2)

  42. Steigman G.: Ann. Rev. Nucl. Part. Sci. 57, 463 (2007)

    Article  ADS  Google Scholar 

  43. Wright E.L.: Astrophys. J. 664, 633 (2007)

    Article  ADS  Google Scholar 

  44. Caldwell R.R.: Phys. Lett. B. 545, 23 (2002)

    Article  ADS  Google Scholar 

  45. Gibbons, G.W.: arXiv:hep-th/0302199

  46. Nojiri S., Odintsov S.D.: Phys. Lett. B 562, 147 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Starobinsky A.A.: Grav. Cosmol. 6, 157 (2000)

    MATH  ADS  Google Scholar 

  48. Caldwell R.R., Kamionkowski M., Weinberg N.N.: Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  49. Nesseris S., Perivolaropoulos L.: Phys. Rev. D. 70, 123529 (2004)

    Article  ADS  Google Scholar 

  50. Hao J.G., Li X.Z.: Phys. Rev. D. 67, 107303 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  51. Li X.Z., Hao J.G.: Phys. Rev. D 69, 107303 (2004)

    Article  ADS  Google Scholar 

  52. Singh P., Sami M., Dadhich N.: Phys. Rev. D. 68, 023522 (2003)

    Article  ADS  Google Scholar 

  53. Hao J.G., Li X.Z.: Phys. Rev. D. 70, 043529 (2004)

    Article  ADS  Google Scholar 

  54. Sami M., Toporensky A.: Mod. Phys. Lett. A. 19, 1509 (2004)

    Article  ADS  Google Scholar 

  55. Nojiri S., Odintsov S.D., Tsujikawa S.: Phys. Rev. D. 71, 063004 (2005)

    Article  ADS  Google Scholar 

  56. Gumjudpai B., Naskar T., Sami M., Tsujikawa S.: J. Cosmol. Astropart. Phys. 0506, 007 (2005)

    Article  ADS  Google Scholar 

  57. Urena-Lopez L.A.: J. Cosmol. Astropart. Phys. 0509, 013 (2005)

    Article  ADS  Google Scholar 

  58. Cognola G., Elizalde E., Nojiri S., Odintsov S., Zerbini S.: Phys. Rev. D. 73, 084007 (2006)

    Article  ADS  Google Scholar 

  59. Cognola G., Elizalde E., Nojiri S., Odintsov S., Zerbini S.: Phys. Rev. D. 75, 086002 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  60. Nojiri S., Odintsov S.D., Sasaki M.: Phys. Rev. D. 71, 123509 (2005)

    Article  ADS  Google Scholar 

  61. Sami M., Toporensky A., Tretjakov P.V., Tsujikawa S.: Phys. Lett. B. 619, 193 (2005)

    Article  ADS  Google Scholar 

  62. Calcagni G., Tsujikawa S., Sami M.: Class. Quant. Grav. 22, 3977 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. Wei H., Cai R.G.: Phys. Rev. D. 72, 123507 (2005)

    Article  ADS  Google Scholar 

  64. Leith B.M., Neupane I.P.: J. Cosmol. Astropart. Phys. 0705, 019 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  65. Koivisto T., Mota D.F.: Phys. Lett. B. 644, 104 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  66. Koivisto T., Mota D.F.: Phys. Rev. D. 75, 023518 (2007)

    Article  ADS  Google Scholar 

  67. Samart D., Gumjudpai B.: Phys. Rev. D. 76, 043514 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  68. Naskar T., Ward J.: Phys. Rev. D. 76, 063514 (2007)

    Article  ADS  Google Scholar 

  69. Gumjudpai, B.: Thai J. Phys. Series 3: Proceedings of the SIAM Phys. Cong. (2007) [arXiv:0706.3467 [gr-qc]]

  70. Chervon, S.V., Zhuravlev, V.M.: arXiv: gr-qc/9907051

  71. Yurov, A.V.: arXiv: astro-ph/0305019

  72. Andrianov A.A., Cannata F., Kamenshchik A.: Phys. Rev. D. 72, 043531 (2005)

    Article  ADS  Google Scholar 

  73. Das, A., Tariq, N., Woodside, R.W.M.: arXiv:gr-qc/0610097

  74. Yurov, A.V., Astashenok, A.V., Yurov, V.A.: arXiv: astro-ph/0701597

  75. Lucchin F., Matarrese S.: Phys. Rev. D. 32, 1316 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burin Gumjudpai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phetnora, T., Sooksan, R. & Gumjudpai, B. Phantom expansion with non-linear Schrödinger-type formulation of scalar field cosmology. Gen Relativ Gravit 42, 225–240 (2010). https://doi.org/10.1007/s10714-009-0831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0831-9

Keywords

Navigation