Skip to main content
Log in

On a covariant version of Caianiello’s model

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Caianiello’s derivation of Quantum Geometry through an isometric embedding of the spacetime (M, g̃) in the pseudo-Riemannian structure (T*M, g* AB ) is reconsidered. In the new derivation, using a non-linear connection and the bundle formalism, we obtain a Lorentzian-type structure in the 4-dimensional manifold M that is covariant under arbitrary local coordinate transformations in M. We obtain that if models with maximal acceleration are non-trivial, gravity should be supplied with other interactions in a unification framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asanov, G.S.: Finsler Geometry, Relativity and Gauge Theories, Reidel (1985)

  2. Bowick M.J., Giddins S.B. (1989) High-temperature strings. Nucl. Phys. B 325, 631

    Article  ADS  Google Scholar 

  3. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics 200, Springer, Heidelberg

  4. Bozza V., Capozziello S., Lambiase G., Scarpetta G. (2001) Neutrino oscillations in Caianiello’s quantum geometry model Int. J. Theor. Phys. 40, 849

    Article  MATH  Google Scholar 

  5. Bozza V., Feoli A., Lambiase G., Papini G., Scarpetta G. (2001) Maximal acceleration in Kerr Space. Phys. Lett. A283, 53

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Brandt, H.E.: Finslerian Space-Time, Contemporary Mathematics 196:273 Finslerian Quantum Field Theory, hep-th/0407103 (1996)

  7. Beem J. (1970). Canadian Mathematical Journal 22: 1037

    MathSciNet  Google Scholar 

  8. Caianiello E.R. (1992) Quantum and other physics as systems theory. La Rivista del Nuovo Cimento 15, 4

    MathSciNet  Google Scholar 

  9. Caianiello E.R., Feoli A., Gasperini M., Scarpetta G. (1990) Int. J. Theor. Physics 29: 131

    Article  MATH  MathSciNet  Google Scholar 

  10. Capozziello S., Lambiase G., Scarpetta G. (1999) Cosmological perturbations in singularity-free deflationary models, Il Nuovo Cimento 114 B(1): 93

    Google Scholar 

  11. Dehnen H., Vacaru S.I. (2003) Nonlinear Connections and Nearly Autoparallel Maps in General Relativity. Gen. Rel. Grav. 35, 807–850

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Einstein A., Infeld L., Hoffmann B. (1939). Ann. Math. 39, 65

    Article  MathSciNet  Google Scholar 

  13. Gallego R. (2006). A Finslerian version of ’t Hooft Deterministic Quantum Models. J. Math. Phys. 47, 072101

    Article  MathSciNet  ADS  Google Scholar 

  14. Gallego, R.: On the maximal universal acceleration in deterministic Finslerian models, gr-qc/0503094

  15. Goeckeler, M., Schuecker, T.: Differential Geometry, Gauge Theories and Gravity, Cambridge Monograph in Mathematical Physics

  16. Kobayashi S., Nomizu K. (1969) Foundations of Differential Geometry, Vol I. Wiley Intersciencie, New York

    Google Scholar 

  17. Lambiase G., Papini G., Punzi R., Scarpetta G. (2006). Lower Neutrino Mass Bound from SN1987A Data and Quantum Geometry. Class. Quant.Grav. 23: 1347

    Article  MATH  ADS  Google Scholar 

  18. Miron R., Anastasiei M. (1994) The Geometry of Lagrange Spaces: Theory and Applications. Kluwer, Dordrecht

    MATH  Google Scholar 

  19. Miron R. (1997) The Geometry of Higher-Order Lagrange Spaces, Kluwer, Dordrecht

    MATH  Google Scholar 

  20. Miron, R., Hrimiuc, D., Shimada, H., Sabau, V.: The Geometry of Hamilton and Lagrange Spaces, Fundamental Theories in Physics 118, Kluwer (2001)

  21. Parentani R., Potting R. (1989) accelerating observer and the hagedorn temperature. Phys. Rev. Lett. 63, 945

    Article  ADS  Google Scholar 

  22. Perlick V. (2006) Fermat Principle in Finsler Spacetimes. Gen. Rel. Grav. 38, 365–380

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Papini G., Scarpetta G., Bozza V., Feoli A., Lambiase G. (2002) Radiation bursts from particles in the field of compact, impenetrable, astrophysical objects. Phys. Lett. A300, 603

    Article  ADS  Google Scholar 

  24. Szabó I.Z. (1981) Positive definite Berwald Spaces (Structure theorems on Berwald Spaces). Tensor, N. S. 35, 25–39

    MATH  MathSciNet  Google Scholar 

  25. Toller, M.: Geometries of Maximal Acceleration, hep-th/0312016; Lagrangian and Presymplectic Particle Dynamics with Maximal Acceleration, hep-th/0409317

  26. Vacaru S. I., Dehnen H. (2003) Locally anisotropic structures and nonlinear connections in Einstein and Gauge gravity. Gen. Rel. Grav. 35, 209–250

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Vacaru S., Stavrinos P. (2002) Spinors and Space-Time Anisotropy. Athens University Press, Athens

    Google Scholar 

  28. Vacaru, S., Stavrinos, P., Gaburon, E., Gonta, D.: Clifford and Riemannian-Finsler Structures in Geometric Mechanics and Gravity, Geometry Balkan Press, 2005, gr-qc/0508023 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gallego Torrome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torrome, R.G. On a covariant version of Caianiello’s model. Gen Relativ Gravit 39, 1833–1845 (2007). https://doi.org/10.1007/s10714-007-0491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0491-6

Keywords

Navigation