Skip to main content
Log in

Unifying phantom inflation with late-time acceleration: scalar phantom–non-phantom transition model and generalized holographic dark energy

General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The unifying approach to early-time and late-time universe based on phantom cosmology is proposed. We consider gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term. As a result, the possibility of phantom–non-phantom transition appears in such a way that universe could have effectively phantom equation of state at early time as well as at late time. In fact, the oscillating universe may have several phantom and non-phantom phases. Role in each of two phase and can be absorbed into the redefinition of the scalar field. Right on the transition point, however, the factor cannot be absorbed into the redefinition and play the role to connect two phases smoothly. Holographic dark energy where infrared cutoff is identified with combination of FRW parameters: Hubble constant, particle and future horizons, cosmological constant and universe life-time (if finite). Depending on the specific choice of the model the number of interesting effects occur: the possibility to solve the coincidence problem, crossing of phantom divide and unification of early-time inflationary and late-time accelerating phantom universe. The bound for holographic entropy which decreases in phantom era is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hannestad S., Mortsell E. (2002) Phys. Rev. D 66, 063508

    Article  ADS  Google Scholar 

  2. Melchiori A., Mersini-Houghton L., Odman C.J., Trodden M. (2003) Phys. Rev. D 68, 043509

    Article  ADS  Google Scholar 

  3. Jassal, H., Bagla, J., Padmanabhan, T. arXiv:astro-ph/0506748

  4. Perivolaropoulos, L., astro-ph/0601014

  5. Caldwell R.R., Kamionkowski M., Weinberg N.N. (2003) Phys. Rev. Lett. 91, 071301 [arXiv:astro-ph/0302506]:

    Article  ADS  Google Scholar 

  6. McInnes B. (2002) JHEP 0208, 029 [arXiv:hep-th/0112066]

    Article  ADS  MathSciNet  Google Scholar 

  7. Faraoni V. (2002) Int. J. Mod. Phys. D 64, 043514 gr-qc/0404078; gr-qc/0506095

    MathSciNet  Google Scholar 

  8. Nojiri S., Odintsov S.D. (2003) Phys. Lett. B 565, 1 [arXiv:hep-th/0304131]

    Article  MATH  ADS  Google Scholar 

  9. Nojiri S., Odintsov S.D. (2004) Phys. Lett. B 595, 1 [arXiv:hep-th0405078]

    Article  ADS  Google Scholar 

  10. Singh P., Sami M., Dadhich N. (2003) Phys. Rev. D 68, 023522 [arXIv:hep-th/0305110]

    Article  ADS  Google Scholar 

  11. Gonzalez-Diaz P. (2004) Phys. Lett. B 586, 1 [arXiv:astro-ph/0312579]; arXiv:hep-th/0408225

    Article  ADS  Google Scholar 

  12. Stefancic H (2004) Eur. Phys. J.C: 36, 523 [arXiv:astro-ph/0312484];

    Article  ADS  MATH  Google Scholar 

  13. Sami M., Toporensky A. (2004) Mod. Phys. Lett. A 19: 1509 [arXiv:gr-qc/0312009]

    Article  ADS  Google Scholar 

  14. Meng X., Wang P. (2005) Class. Quant. Grav. 23, 22 [arXiv:gr-qc/0411007]

    Google Scholar 

  15. Carroll S., M., De Felice, A., Trodden, M., Phys. Rev. D 71, 023525 (2005) arXiv:astro-ph/0408081

  16. Czaki C., Kaloper N., Terning J. (2005) Ann Phys. 317, 410 [arXiv:astro-ph/0409596]

    Article  ADS  Google Scholar 

  17. Tsujikawa S., Sami M. (2004) Phys. Lett. B 603, 113 [arXiv:hep-th/0409212]

    Article  ADS  Google Scholar 

  18. Gonzalez-Diaz P., Siguenza C. (2004) Nucl. Phys. B 697, 363 [arXiv:astro-ph/0407421]

    Article  MATH  ADS  Google Scholar 

  19. Chimento L.P., Lazkoz R. (2003) Phys. Rev. Lett. 91, 211301 [arXiv:gr-qc/0307111]

    Article  ADS  Google Scholar 

  20. Chimento L.P., Lazkoz R. (2004) Mod. Phys. Lett. A 19: 2479 [arXiv:gr-qc/0405020]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Hao J., Li X. (2005) Phys. Lett. B 606, 7 [arXiv:astro-ph/0404154]

    Article  ADS  Google Scholar 

  22. Nesseris S., Perivolaropoulos L. (2004) Phys. Rev. D 70, 123529 [arXiv:astro-ph/0410309]

    Article  ADS  Google Scholar 

  23. Guo Z., Piao Y., Zhang X., Zhang Y. (2005) Phys. Lett. B 608: 177 [arXiv:astro-ph/0410654]

    Article  ADS  Google Scholar 

  24. Elizalde E., Nojiri S., Odintsov S.D. (2004) Phys. Rev. D 70, 043539 [arXiv:hep-th/0405034]

    Article  ADS  Google Scholar 

  25. Babichev E., Dokuchaev V., Eroshenko Yu (2005) Class. Quant. Grav. 22, 143 [arXiv:astro-ph/0407190]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Zhang, X., Li, H., Piao, Y., Zhang, X. arXiv:astro-ph/0501652

  27. Bouhmadi-Lopez M., Jimenez-Madrid J. (2005) JCAP 0505, 005 [arXiv:astro-ph/0404540]

    ADS  Google Scholar 

  28. Wei Y. (2005) Mod. Phys. Lett. A 20: 1147 [arXiv:gr-qc/0410050]; arXiv:gr-qc/0502077

    Article  MATH  ADS  Google Scholar 

  29. Onemli V.K., Woodard R. (2004) Phys. Rev. D 70, 107301 [arXiv:gr-qc/0406098]

    Article  ADS  Google Scholar 

  30. Dabrowski, M., Stachowiak, T. arXiv:hep-th/0411199

  31. Abdalla M.C.B., Odintsov S.D., Nojiri S. (2005) Class. Quant. Grav. 22, L35 [arXiv:hep-th/0409177]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Cai R.-G. (2005) JCAP 0503, 002 [arXiv:hep-th/0411025]

    ADS  Google Scholar 

  33. Cai, R.-G., Zhang, H.-S., Wang, A. arXiv:hep-th/0505186

  34. Arefeva, I.Ya., Koshelev, A.S., Vernov, S.Yu. arXiv:astro-ph/0412619

  35. Wei, H., Cai, R.-G., Zeng, D. arXiv:hep-th/0501160

  36. Curbelo, R., Gonzalez, T., Quiros, I. arXiv:astro-ph/0502141

  37. Gumjudpai B., Naskar T., Sami M., Tsujikawa S. (2005) JCAP 0506, 007 [arXiv:hep- th/0502191]

    ADS  Google Scholar 

  38. Lu, H., Huang, Z., Fang, W. arXiv:hep-th/0504038

  39. Nojiri S., Odintsov S.D., Sasaki M. (2005) Phys. Rev. D 71, 123509 [arXiv:hep-th/0504052]

    Article  ADS  Google Scholar 

  40. Sami, M., Toropensky, A., Trejakov, P., Tsujikawa, S. arXiv:hep-th/0504154

  41. Bauer, F. arXiv:gr-qc/0501078

  42. Sola, J., Stefancic, H. arXiv:astro-ph/0505133

  43. Calcagni, G., Tsujikawa, S., Sami, M. arXiv:hep-th/0505193

  44. Andrianov, A., Cannata, F., Kamenshchik, A. arXiv:gr-qc/0505087

  45. Nojiri S., Odintsov S.D., Tsujikawa S. (2005) Phys. Rev. D 71, 063004 [arXiv:hep-th/0501025]

    Article  ADS  Google Scholar 

  46. Nojiri S., Odintsov S.D. (2003) Phys. Lett. B 562, 147 [arXiv:hep-th/0303117]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Nojiri S., Odintsov S.D. (2003) Phys. Lett. B 571, 1 [arXiv:hep-th/0306212]

    Article  MATH  ADS  Google Scholar 

  48. Nojiri S., Odintsov S.D. (2003) Phys. Rev. D 68, 123512 [arXiv:hep-th/0307288]

    Article  ADS  MathSciNet  Google Scholar 

  49. Cardone, V.F., Troisi, A., Capozzielo, S. arXiv:astro-ph/0506371

  50. Nojiri S., Odintsov S.D. (2004) Phys. Rev. D 70, 103522 [arXiv:hep-th/0408170]

    Article  ADS  MathSciNet  Google Scholar 

  51. Stefancic H. (2005) Phys. Rev. D 71, 084024 [arXiv:astro-ph/0411630]; arXiv:astro-ph/0504518

    Article  ADS  Google Scholar 

  52. Szydlowski, M., Godlowski, W., Wojtak, R. arXiv:astro-ph/0505202

  53. Nojiri S., Odintsov S.D. (2005) Phys. Rev. D 72, 023003 [arXiv:hep-th/0505215]

    Article  ADS  Google Scholar 

  54. Piao Y.-S., Zhou E. (2003) Phys. Rev. D 68, 083515 [arXiv:hep-th/0308080]

    Article  ADS  Google Scholar 

  55. Gonzalez-Diaz P., Jimenez-Madrid J. (2004) Phys. Lett. B 596, 16

    Article  ADS  Google Scholar 

  56. Piao Y.S., Zhang Y.Z. (2004) Phys. Rev. D 70, 063513

    Article  ADS  Google Scholar 

  57. Anisimov A., Babichev E., Vikman A. (2005) JCAP 0506, 006 arXiv:astro-ph/0504560

    ADS  Google Scholar 

  58. Elizalde E., Naftulin S., Odintsov S.D. (1994) Phys. Rev. D 49: 2852

    Article  ADS  Google Scholar 

  59. Capozziello S., Nojiri S., Odintsov S.D. (2006) Phys. Lett. B 632, 597 [arXiv:hep-th/0507182]

    Article  ADS  Google Scholar 

  60. Li M. (2004) Phys. Lett. B 603, 1 [arXiv:hep-th/0403127]

    Article  ADS  Google Scholar 

  61. Huang Q.-C., Gong Y. (2004) JCAP 0408, 006 [arXiv:astro-ph/0403590]

    ADS  Google Scholar 

  62. Wang B., Abdalla E., Su R.-K. (2005) Phys. Lett. B 611, 21 [arXiv:hep-th/0404057]

    Article  ADS  Google Scholar 

  63. Myung, Y.S. arXiv:hep-th/0501023; arXiv:hep-th/0502128

  64. Enqvist K., Sloth M.S. (2004) Phys. Rev. Lett. 93, 221302 [arXiv:hep-th/0406019]

    Article  ADS  Google Scholar 

  65. Hsu, S., Zee, A. arXiv:hep-th/0406142

  66. Ito, M. arXiv:hep-th/0405281

  67. Gonzalez-Diaz, P.F. arXiv:hep-th/0411070

  68. Huang Q.-G., Li M. (2005) JCAP 0503, 001 [arXiv:hep-th/0410095]

    ADS  Google Scholar 

  69. Nobbenhuis, S. arXiv:gr-qc/0411093

  70. Gong, Y., Wang, B., Zhang, Y. arXiv:hep-th 0412218

  71. Medved, A.J.M. arXiv:hep-th/0501100

  72. Zhang, X. arXiv:astro-ph/0504586

  73. Gong, Yu., Zhang, Y. arXiv:hep-th/0505175

  74. Padmanabhan, T. arXiv:gr-qc/0503107

  75. Guberina B., Horvat R., Stefancic H. (2005) JCAP 0505, 001 [arXiv:astro-ph/0503495]

    ADS  Google Scholar 

  76. McInnes B. (2005) Nucl. Phys. B 718, 55 [arXiv:hep-th/0502209]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  77. Zhang, X., Wu, F. arXiv:astro-ph/0506310

  78. Elizalde E., Nojiri S., Odintsov S.D., Wang P. (2005) Phys. Rev. D 71, 103504 [arXiv:hep-th/0502082]

    Article  ADS  Google Scholar 

  79. Amendola L. (2000) Phys. Rev. D 62, 043511

    Article  ADS  Google Scholar 

  80. Zimdahl W., Pavón D., Chimento L.P. (2001) Phys. Lett. B 521, 133

    Article  MATH  ADS  Google Scholar 

  81. Pavón, D., Zimdahl, W. arXiv:gr-qc/0505020

  82. Wang, B., Gong, Y., Abdalla, E. arXive:hep-th/0506069

  83. Verlinde, E. arXiv:hep-th/0008140

  84. Ke K., Li M. (2005) Phys. Lett. B 606, 173 [arXiv:hep-th/0407056]

    Article  ADS  MathSciNet  Google Scholar 

  85. Setare, M.R. arXiv:hep-th/0405010

  86. Brevik I., Nojiri S., Odintsov S.D., Vanzo L. (2004) Phys. Rev. D 70, 043520 [arXive:hep-th/0401073]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin’ichi Nojiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nojiri, S., Odintsov, S.D. Unifying phantom inflation with late-time acceleration: scalar phantom–non-phantom transition model and generalized holographic dark energy. Gen Relativ Gravit 38, 1285–1304 (2006). https://doi.org/10.1007/s10714-006-0301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-006-0301-6

Keywords

Navigation