Skip to main content
Log in

How to reach a few percent level in determining the Lense–Thirring effect?

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we explore the possibility of suitably combining the nodes Ω of the existing geodetic LAGEOS, LAGEOS II and Ajisai laser-ranged satellites and of the radar altimeter Jason–1 satellite in order to increase the accuracy in testing the general relativistic gravitomagnetic Lense–Thirring secular effect in the gravitational field of the Earth. The proposal of introducing Ajisai and Jason–1 in such a combination comes from the expected benefits which could be obtained in reducing the aliasing secular impact of the classical part of the terrestrial gravitational field. According to the recently released EIGEN-CG01C combined GRACE + CHAMP + terrestrial gravimetry/altimetry Earth gravity model, the impact of the static part of the mismodelled even zonal harmonics of geopotential, which represent the major source of systematic error, amounts to 1.6%, at 1−σ level. It is better than the error which could be obtained with a two-node LAGEOS-LAGEOS II only combination (6% at 1−σ). Moreover, the proposed combination would be insensitive also to the secular variations of the low-degree even zonal harmonics, contrary to the LAGEOS-LAGEOS II only combination. Such variations could be a serious limiting factor over observational time spans many years long. The price to be paid for this improvements of the systematic error of gravitational origin is represented by the non-conservative forces introduced along with the new orbital elements. However, they would induce periodic perturbations, contrary to the gravitational noise. A major concern would be the assessment of the impact of the non-conservative accelerations on the Jason–1 node. According to the present-day force models, the mismodelling in the non-conservative forces would, at worst, induce an aliasing periodic signal with an amplitude of 4% of the Lense-Thirring effect over a time span of 2 years. However, an observational time span of just some years could safely be adopted in order to fit and remove the residual long–period non-gravitational signals affecting Jason’s node, which, in the case of the direct solar radiation pressure, have a main periodicity of approximately 120 days. Of course, the possibility of getting time series of the Jason’s node some years long should be demonstrated in reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia. Princeton University Press, New York (1995)

    Google Scholar 

  2. Stella, L., et al.: Section E probing the gravitomagnetic Lense-Thirring effect with neutron stars and black holes. In: Ruffini, R., Sigismondi, C. (eds.) Nonlinear Gravitodynamics. The Lense–Thirring Effect, World Scientific, Singapore, pp. 235–345 (2003)

    Google Scholar 

  3. Nordtvedt, K.: Some considerations on the varieties of frame dragging. In: Ruffini, R., Sigismondi, C. (eds.) Nonlinear Gravitodynamics. The Lense–Thirring Effect, World Scientific, Singapore, pp. 35–45 (2003)

    Google Scholar 

  4. Schiff, L.I.: On experimental tests of the general theory of relativity. Am. J. Phys. 28, 340–343 (1960)

    Google Scholar 

  5. Everitt, C.W.F.: And other members of the gravity probe B team. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds.) Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space. (Lecture Note in Physics 562), pp. 52–82. Springer, Berlin (2001)

    Google Scholar 

  6. Lense, J., Thirring, H.: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie Phys. Z. 19, 156–163; translated and discussed by Mashhoon, B., Hehl, F.W., Theiss, D.S. (1918). On the gravitational effects of rotating masses: The Thirring-Lense papers. Gen. Rel. Grav. 16, 711–750 (1984)

    Google Scholar 

  7. Ciufolini, I.: Measurement of Lense–Thirring drag on high-altitude laser ranged artificial satellite. Phys. Rev. Lett. 56, 278–281 (1986)

    Article  PubMed  Google Scholar 

  8. Iorio, L., Lucchesi, D., Ciufolini, I.: The LARES mission revisited: an alternative scenario. Class. Quantum. Grav. 19, 4311–4325 (2002)

    Article  Google Scholar 

  9. Iorio, L., Ciufolini, I., Pavlis, E.C., Schiller, S., Dittus, H., Lämmerzahl, C.: On the possibility of measuring the Lense-Thirring effect with a LAGEOS-LAGEOS II-OPTIS mission. Class. Quantum. Grav. 21, 2139–2151 (2004)

    Article  Google Scholar 

  10. Lämmerzahl, C., Dittus, H., Peters, A., Schiller, S.: OPTIS–a satellite–based test of special and general relativity. Class. Quantum. Grav. 18, 2499–2508 (2001)

    Article  Google Scholar 

  11. Ciufolini, I., Pavlis, E.C., Chieppa, F., Fernandes-Vieira, E., Pérez-Mercader, J.: Test of general relativity and measurement of the Lense-Thirring effect with two earth satellites. Science 279, 2100–2103 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Ciufolini, I.: Test of general relativity: 1995–2002 measurement of frame–dragging. In: Proceedings of the Physics in Collision Conference. Stanford, California, June 20–22 Preprint (2002) [gr-qc/0209109]

  13. Ciufolini, I.: On a new method to measure the gravitomagnetic field using two orbiting satellites. Il Nuovo Cimento A 109, 1709–1720 (1996)

    Google Scholar 

  14. Will, C.M.: Theory and Experiment in Gravitational Physics, 2nd edition. Cambridge University Press, Cambridge, United Kingdom (1993)

    Google Scholar 

  15. Will, C.M.: http://www.livingreviews.org/Articles/Volume4/2001-4will (2001)

  16. Ries, J.C., Eanes, R.J., Tapley, B.D., Peterson, G.E.: Prospects for an improved Lense-Thirring test with SLR and the GRACE gravity mission. In: Noomen, R., Klosko, S., Noll, C., Pearlman, M. (eds.) Proc. 13th Int. Laser Ranging Workshop NASA CP 2003-212248 (NASA Goddard) (2003). (Preprint http://cddisa.gsfc.nasa.gov/lw13/lw_proceedings.html#science)

  17. Ries, J.C., Eanes, R.J., Tapley, B.D.: Lense-Thirring precession determination from laser ranging to artificial satellites. In: Ruffini, R., Sigismondi, C. (eds.) Nonlinear Gravitodynamics. The Lense–Thirring effect. World Scientific, Singapore, pp. 201–211 (2003)

    Google Scholar 

  18. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R.: The development of the joint NASA GSFC and the National Imagery Mapping Agency (NIMA) Geopotential Model EGM96 NASA/TP-1998-206861 (1998)

  19. Iorio, L.: The impact of the static part of the Earth’s gravity field on some tests of general relativity with satellite laser ranging. Celest. Mech. & Dyn. Astron. 86, 277–294 (2003)

    Google Scholar 

  20. Iorio, L. Morea, A.: The impact of the new earth gravity models on the measurement of the Lense–Thirring effect. Gen. Rel. Grav. 36, 1321–1333 (2004)

    Article  Google Scholar 

  21. Lucchesi, D.: Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense-Thirring determination. Part I, Planet. Space Sci. 49, 447–463 (2001)

    Article  Google Scholar 

  22. Lucchesi, D.: Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense–Thirring determination. Part II Planet. Space Sci. 50, 1067–1100 (2002)

    Article  Google Scholar 

  23. Pavlis, E.C.: Geodetic contributions to gravitational experiments in space. In: Cianci, R., Collina, R., Francaviglia, M., Fré, P. (eds.) Recent Developments in General Relativity, pp. 217–233. Springer–Verlag, Milan (2002)

    Google Scholar 

  24. Iorio, L.: Is it possible to improve the present LAGEOS–LAGEOS II Lense–Thirring experiment? Class. and Quantum Grav. 19, 5473–5480 (2002)

    Article  Google Scholar 

  25. Reigber, Ch., Schwintzer, P., Stubenvoll, R., Schmidt, R., Flechtner, F., Meyer, U., König, R., Neumayer, H., Förste, Ch., Barthelmes, F., Zhu, S.Y., Balmino, G., Biancale, R., Lemoine, J.-M., Meixner, H., Raimondo, J.C.: A high resolution global gravity field model combining champ and grace satellite mission and surface gravity data: EIGEN-CG01C. Submitted to J. Geod. (2004)

  26. Iorio, L.: Earth tides and Lense-Thirring effect. Celest. Mech. & Dyn. Astron. 79, 201–230 (2001)

    Google Scholar 

  27. Cox, C., Au, A., Boy, J.-P., Chao, B.: Time variable gravity: using satellite laser ranging as a tool for observing long-term changes in the earth system. In: Proceedings of the 13th International Laser Ranging Workshop, Washington DC, October 7–11 Preprint http://cddisa.gsfc.nasa.gov/lw13/lw_proceedings.html#science (2002)

  28. Ciufolini, I., Pavlis, E.C.: A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Reigber, Ch., Schmidt, R., Flechtner, F., König, R., Meyer, U., Neumayer, K.-H., Schwintzer, P., Zhu, S.Y.: An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodynamics 39, 1–10 (2005)

    Article  Google Scholar 

  30. Iorio, L.: On the reliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites. New Astronomy 10, 603–615 (2005a) doi: 10.1016/j.newast.2005.01.001.; Iorio, L.: The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect with a new satellite. New Astronomy 10, 632–651 (2005b) doi: 10.1016/j.newast.2005.02.006

    Google Scholar 

  31. Luthcke, S.B., Zelensky, N.P., Rowlands, D.D., Lemoine, F.G., Williams, T.A.: The 1–centimeter orbit: jason–1 precision orbit determination using gps, SLR, DORIS, and Altimeter Data. Marine Geod. 26, 399–421 (2003)

    Google Scholar 

  32. Vespe, F., Rutigliano, P.: The improvement of the Earth gravity field estimation and its benefits in the atmosphere and fundamental physics. Paper presented at 35th COSPAR Scientific Assembly Paris, France, 18–25 July 2004, COSPAR04-A-03614 Adv. Sp. Res., submitted (2004)

  33. Tapley, B.D., Watkins, M.M., Ries, J.C., Davies, G.W., Eanes, R.J., Poole, S.R., Rim, H.J., Schutz, B.E., Shum, C.K., Nerem, R.S., Lerch, F.J., Marshall, J.A., Klosko, S.M., Pavlis, N.K., Williamson, R.G.: The joint gravity model 3. J. Geophys. Res. 101, 28029–28049 (1996)

    Article  Google Scholar 

  34. Iorio, L., Pavlis, E.C.: Tidal satellite perturbations and the Lense-Thirring effect. J. Geod. Soc. of Japan 47, 169–173 (2001)

    Google Scholar 

  35. Pavlis, E.C., Iorio, L.: The impact of tidal errors on the determination of the Lense-Thirring effect from satellite laser ranging. Int. J. Mod. Phys. D 11, 599–618 (2002)

    Article  Google Scholar 

  36. Abd El-Salam, F.A., Sehnal, L.: A second order analytical atmospheric drag theory based on the TD88 thermospheric density model. Celst. Mech. & Dyn. Astron. 90, 361–389 (2004)

    Google Scholar 

  37. Sengoku, A., Cheng, M.K., Schutz, B.E., Hashimoto, H.: Earth–heating effect on Ajisai. J. Geod. Soc. of Japan 42, 15–27 (1996)

    Google Scholar 

  38. Sengoku, A., Cheng, M.K., Schutz, B.E.: Anisotropic reflection effect on satellite Ajisai. J. Geod. 70, 140–145 (1995)

    Article  Google Scholar 

  39. Marshall, J.A., Zelensky, N.P., Klosko, S.M., Chinn, D.S., Luthcke, S.B., Rachlin, K.E., Williamson, R.G.: The temporal and spatial characteristics of TOPEX/Poseidon radial orbit error. J. Geophys. Res. 100, 25331–25352 (1995)

    Article  Google Scholar 

  40. Antreasian, P.G., Rosborough G.W.: Prediction of radiant energy forces on the TOPEX/Poseidon spacecraft. J. Spacecraft Rockets 29, 81–90 (1992)

    Google Scholar 

  41. Marshall, J.A., Luthcke, S.B.: Radiative force model performance for TOPEX/Poseidon precision orbit determination. J. Astronaut. Sci. 49, 229–246 (1994)

    Google Scholar 

  42. Kubitschek, D.G., Born, G.H.: Modelling the anomalous acceleration and radiation pressure forces for the TOPEX/POSEIDON spacecraft. Phil. Trans. R. Soc. Lond. A 359, 2191–2208 (2001)

    Google Scholar 

  43. Berthias, J.-P., Piuzzi, A., Ferrier, C.: Jason postlaunch satellite characteristics for POD activities. http://calval.jason.oceanobs.com/html/calval_plan/pod/modele_jason.html (2002)

  44. Doornbos, E., Scharroo, R., Klinkrad, H., Zandbergen, R., Fritsche, B.: Improved modelling of surface forces in the orbit determination of ERS and Envisat. Can. J. Remote Sensing 28, 535–543 (2002)

    Google Scholar 

  45. Ziebart, M., Adhya, S., Cross, P., Bar–Sever, Y., Desai, S.: Pixel array solar and thermal force modelling for Jason: On–orbit test results paper presented at the ‘From TOPEX-POSEIDON to Jason’ Science Working Team meeting. Arles, France (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Iorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iorio, L., Doornbos, E. How to reach a few percent level in determining the Lense–Thirring effect?. Gen Relativ Gravit 37, 1059–1074 (2005). https://doi.org/10.1007/s10714-005-0091-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-005-0091-2

Keywords

Navigation