Skip to main content
Log in

Three-Dimensional Urban Subsurface Space Tomography with Dense Ambient Noise Seismic Array

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Two-dimensional dense seismic ambient noise array techniques have been widely used to image and monitor subsurface structure characterization in complex urban environments. It does not have limitations in the layout under the limitation of urban space, which is more suitable for 3D S-velocity imaging. In traditional ambient seismic noise tomography, the narrowband filtering (NBF) method has many possible dispersion branches. Aliases would appear in the dispersive image, and the dispersion curve inversion also depends on the initial model. To obtain high-accuracy 3D S-velocity imaging in urban seismology, we developed a robust workflow of data processing and S-velocity tomography for 2D dense ambient noise arrays. Firstly, differing from the NBF method, we adopt the continuous wavelet transform (CWT) as an alternative method to measure the phase velocity from the interstation noise cross-correlation function (NCF) without 2π ambiguity. Then, we proposed the sequential dispersion curve inversion (DCI) strategy, which combines the Dix linear inversion and preconditioned fast descent (PFD) method to invert the S-velocity structure without prior information. Finally, the 3D S-velocity model is generated by the 3D spatial interpolation. The proposed workflow is applied to the 2D dense ambient seismic array dataset in Changchun City. The quality evaluation methods include residual iteration error, horizontal-to-vertical spectral ratio (HVSR) map, and electrical resistivity tomography (ERT). All tests indicate that the developed workflow provides a reliable 3D S-velocity model, which offers a reference for urban subsurface space exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aki K (1957) Space and time spectra of array stochastic waves, with special reference to microtremors. Bull Earthq Res Inst 35:415–456

    Google Scholar 

  • Asten M, Hayashi K (2018) Application of the spatial auto-correlation method for shear-wave velocity studies using ambient noise. Surv Geophys 39:633–659. https://doi.org/10.1007/s10712-018-9474-2

    Article  Google Scholar 

  • Bard P-Y (1999) Microtremor measurements: a tool for site effect estimation. Effects Surf Geol Seism Motion 3:1251–1279

    Google Scholar 

  • Beaty KS, Schmitt DR, Sacchi M (2002) Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure. Geophys J Int 151:622–631. https://doi.org/10.1046/j.1365-246X.2002.01809.x

    Article  Google Scholar 

  • Bellanova J, Calamita G, Giocoli A, Luongo R, Perrone A, Lapenna V, Piscitelli S (2016) Electrical resistivity tomography surveys for the geoelectric characterization of the Montaguto landslide (southern Italy). Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2016-28

  • Benjumea B, Gabàs A, Macau A, Bellmunt F, Ledo J, Ripoll J, Figueras S (2023) Geomechanical parameters assessment and geological characterization using fuzzy C means clustering of electrical resistivity and seismic data. Near Surface Geophys. https://doi.org/10.1002/nsg.12247

    Article  Google Scholar 

  • Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169(3):1239–1260

    Article  Google Scholar 

  • Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Jozef K, Fah D (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167(2):827–837. https://doi.org/10.1111/j.1365-246X.2006.03154.x

    Article  Google Scholar 

  • Brodic B, Malehmir A, Svensson M, Jonsson J (2018) Feasibility of 3D random seismic arrays for subsurface characterizations in urban environments. Paper presented at the 24th European meeting of environmental and engineering geophysics. https://doi.org/10.3997/2214-4609.201802502

  • Castellaro S, Mulargia F (2009) VS30 estimates using constrained H/V measurements. Bull Seismol Soc Am 99(2A):761–773

    Article  Google Scholar 

  • Chapman CH (1978) A new method for computing synthetic seismograms. Geophys J Int 54(3):481–518. https://doi.org/10.1111/j.1365-246X.1978.tb05491.x

    Article  Google Scholar 

  • Chen Q, Liu L, Wang W, Rohrbach E (2008) Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing. Science Bulletin 54(2):280–287

    Article  Google Scholar 

  • Chen X, Zhang H, Zhou C, Pang J, Xing H, Chang X (2021) Using ambient noise tomography and MAPS for high-resolution stratigraphic identification in Hangzhou urban area. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2021.104327

    Article  Google Scholar 

  • Cheng F, Xia J, Ajo-Franklin JB, Behm M, Zhou C, Dai T, Xi C, Pang J, Zhou C (2021a) High-resolution ambient noise imaging of geothermal reservoir using 3C dense seismic nodal array and ultra-short observation. J Geophys Res: Solid Earth 126(8):1. https://doi.org/10.1029/2021JB021827

    Article  Google Scholar 

  • Cheng F, Xia J, Zhang K, Zhou C, Ajo-Franklin JB (2021b) Phase-weighted slant stacking for surface wave dispersion measurement. Geophys J Int 226(1):256–269

    Article  Google Scholar 

  • Colombero C, Papadopoulou M, Kauti T, Skyttä P, Koivisto E, Savolainen M, Socco LV (2022) Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland). Solid Earth 13(2):417–429

    Article  Google Scholar 

  • Comina C, Foti S, Passeri F, Socco LV (2022) Time-weighted average shear wave velocity profiles from surface wave tests through a wavelength-depth transformation. Soil Dyn Earthq Eng 158:1. https://doi.org/10.1016/j.soildyn.2022.107262

    Article  Google Scholar 

  • Dal Moro G, Pipan M, Gabrielli P (2007) Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J Appl Geophys 61(1):39–55. https://doi.org/10.1016/j.jappgeo.2006.04.002

    Article  Google Scholar 

  • Esfahani R, Gholami A, Ohrnberger M (2020) An inexact augmented Lagrangian method for nonlinear dispersion-curve inversion using Dix-type global linear approximation. Geophysics 85(5):EN77–EN85

    Article  Google Scholar 

  • Feng L, Lei G, Zhihui W, Hailong Li, Kai L, Tao W, Xiaozhao Li (2019) Study of the shear wave velocity structure of underground shallow layer of Jinan by ambient noise tomography. Earth Sci Front 26(3):129–139

    Google Scholar 

  • Foti S, Parolai S, Albarello D, Picozzi M (2011) Application of surface-wave methods for seismic site characterization. Surv Geophys 32(6):777–825. https://doi.org/10.1007/s10712-011-9134-2

    Article  Google Scholar 

  • Gallipoli MR, Lapenna V, Lorenzo P, Mucciarelli M, Perrone A, Piscitelli S, Sdao F (2000) Comparison of geological and geophysical prospecting techniques in the study of a landslide in southern Italy. Eur J Environ Eng Geophys 4:117–128

    Google Scholar 

  • Gao C, Lekić V (2018) Consequences of parametrization choices in surface wave inversion: insights from transdimensional Bayesian methods. Geophys J Int 215(2):1037–1063. https://doi.org/10.1093/gji/ggy310

    Article  Google Scholar 

  • Gupta RK, Agrawal M, Pal SK, Kumar R, Srivastava S (2019) Site characterization through combined analysis of seismic and electrical resistivity data at a site of Dhanbad, Jharkhand, India. Environ Earth Sci 78(6):1. https://doi.org/10.1007/s12665-019-8231-2

    Article  Google Scholar 

  • Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448. https://doi.org/10.1023/A:1006797126800

    Article  Google Scholar 

  • Haney MM, Tsai VC (2015) Nonperturbational surface-wave inversion: a Dix-type relation for surface waves. Geophysics 80(6):EN167–EN177. https://doi.org/10.1190/geo2014-0612.1

    Article  Google Scholar 

  • Hannemann K, Papazachos C, Ohrnberger M, Savvaidis A, Anthymidis M, Lontsi AM (2014) Three-dimensional shallow structure from high-frequency ambient noise tomography: new results for the Mygdonia basin-Euroseistest area, northern Greece. J Geophys Res: Solid Earth 119(6):4979–4999

    Article  Google Scholar 

  • Ikeda T, Tsuji T (2020) Two-station continuous wavelet transform cross-coherence analysis for surface-wave tomography using active-source seismic data. Geophysics 85(1):EN17–EN22

    Article  Google Scholar 

  • Jug J, Grabar K, Strelec S, Dodigović F (2020) Investigation of dimension stone on the Island Brač—geophysical approach to rock mass quality assessment. Geosciences 10(3):1. https://doi.org/10.3390/geosciences10030112

    Article  Google Scholar 

  • Kula D, Olszewska D, Dobiński W, Glazer M (2018) Horizontal-to-vertical spectral ratio variability in the presence of permafrost. Geophys J Int 214(1):219–231

    Article  Google Scholar 

  • Li J, Hanafy S (2016) Skeletonized inversion of surface wave: Active source versus controlled noise comparison. Interpretation 4(3):SH11–SH19

    Article  Google Scholar 

  • Li J, Feng Z, Schuster G (2017) Wave-equation dispersion inversion. Geophys J Int 208(3):1567–1578

    Article  Google Scholar 

  • Li J, Hanafy S, Schuster G (2018) Dispersion inversion of guided P-waves in a waveguide of arbitrary geometry. J Geophys Res: Solid Earth 123(9):7760–7774

    Article  Google Scholar 

  • Li Z, Zhou J, Wu G, Wang J, Zhang G, Dong S, Pan L, Yang Z, Gao L, Ma Q, Ren H, Chen X (2021) CC-FJpy: a python package for extracting overtone surface-wave dispersion from seismic ambient-noise cross correlation. Seismol Res Lett 92(5):3179–3186. https://doi.org/10.1785/0220210042

    Article  Google Scholar 

  • Lin F-C, Moschetti MP, Ritzwoller MH (2008) Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys J Int 173(1):281–298

    Article  Google Scholar 

  • Liu Y, Xia JH, Cheng F, Xi CQ, Shen C, Zhou CJ (2020) Pseudo-linear-array analysis of passive surface waves based on beamforming. Geophys J Int 221(1):640–650

    Article  Google Scholar 

  • Luo Y, Xia J, Miller RD, Xu Y, Liu J, Liu Q (2008) Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform. Pure Appl Geophys 165(05):903–922. https://doi.org/10.1007/s00024-008-0338-4

    Article  Google Scholar 

  • Luo Y, Yang Y, Xu Y, Xu H, Zhao K, Wang K (2015) On the limitations of interstation distances in ambient noise tomography. Geophys J Int 201(2):652–661

    Article  Google Scholar 

  • Luo S, Luo Y, Zhu L, Xu Y (2016) On the reliability and limitations of the SPAC method with a directional wavefield. J Appl Geophys 126:172–182

    Article  Google Scholar 

  • Ma Z, Qian R (2020) Overview of seismic methods for urban underground space. Interpretation 8(4):SU19–SU30. https://doi.org/10.1190/INT-2020-0044.1

    Article  Google Scholar 

  • Maraschini M, Foti S (2010) A Monte Carlo multimodal inversion of surface waves. Geophys J Int 182(3):1557–1566

    Article  Google Scholar 

  • Maraschini M, Ernst F, Foti S, Socco LV (2010) A new misfit function for multimodal inversion of surface waves. Geophysics 75(4):G31–G43. https://doi.org/10.1190/1.3436539

    Article  Google Scholar 

  • McCann DM, Forster A (1990) Reconnaissance geophysical methods in landslide investigations. Eng Geol 29:59–78. https://doi.org/10.1016/0013-7952(90)90082-C

    Article  Google Scholar 

  • McMechan GA, Yedlin MJ (1981) Analysis of dispersive waves by wavefield transformation. Geophysics 46(06):869–874. https://doi.org/10.1190/1.1441225

    Article  Google Scholar 

  • Nakahara H, Haney MM (2022) Connection between the cross-correlation and the Green’s function: strain and rotation of surface waves. Geophys J Int 230(2):1166–1180

    Article  Google Scholar 

  • Nakata N, Snieder R, Tsuji T, Larner K, Matsuoka T (2011) Shear wave imaging from traffic noise using seismic interferometry by cross-coherence. Geophysics 76(6):SA97–SA106. https://doi.org/10.1190/geo2010-0188.1

    Article  Google Scholar 

  • Nakata N, Chang JP, Lawrence JF, Boué P (2015) Body wave extraction and tomography at Long Beach, California, with ambient-noise interferometry. J Geophys Res: Solid Earth 120(2):1159–1173

    Article  Google Scholar 

  • Ning L, Xia J, Dai T, Liu Y, Zhang H, Xi C (2022) High-frequency surface-wave imaging from traffic-induced noise by selecting in-line sources. Surv Geophys. https://doi.org/10.1007/s10712-022-09723-2

    Article  Google Scholar 

  • Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor, part II. Seismol Soc Jpn 24:26–40

    Google Scholar 

  • Okada H, Ishikawa K, Sasabe K, Ling S (1997) Estimation of underground structures in the Osaka–Kobe area by array-network observations of microtremors. In: Proceedings of the 97th society of exploration geophysicists of Japan conference, pp 435–439

  • Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64(3):800–808

    Article  Google Scholar 

  • Pazzi V, Tanteri L, Bicocchi G, D’Ambrosio M, Caselli A, Fanti R (2017) H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: Case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy). Phys Chem Earth Parts a/b/c 98:136–153. https://doi.org/10.1016/j.pce.2016.10.014

    Article  Google Scholar 

  • Perrone A, Lapenna V, Piscitelli S (2014) Electrical resitivity tomography technique for landslide investigation: a review. Earth Sci Rev 135:65–82. https://doi.org/10.1016/j.earscirevol2014.04.002

    Article  Google Scholar 

  • Qian R, Liu L (2020) Imaging the active faults with ambient noise passive seismics and its application to characterize the Huangzhuang-Gaoliying fault in Beijing Area, northern China. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105520

    Article  Google Scholar 

  • Qiu H, Niu F, Qin L (2021) Denoising surface waves extracted from ambient noise recorded by 1-D linear array using three-array interferometry of direct waves. J Geophys Res: Solid Earth. https://doi.org/10.1029/2021JB021712

    Article  Google Scholar 

  • Roberts J, Asten M (2008) A study of near source effects in array-based (SPAC) microtremor surveys. Geophys J Int 174(1):159–177

    Article  Google Scholar 

  • Saygin E, Kennett BLN (2012) Crustal structure of Australia from ambient seismic noise tomography. J Geophys Res: Solid Earth. https://doi.org/10.1029/2011JB008403

    Article  Google Scholar 

  • Sazal Z, Sanuade O, Ismail A (2022) Geophysical characterization of the Carl Blackwell Earth-Fill Dam: Stillwater, Oklahoma, USA. Pure Appl Geophys 179(8):2853–2867

    Article  Google Scholar 

  • Schimmel M, Paulssen H (1997) Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys J Int 130:497–505

    Article  Google Scholar 

  • Shabani E, Bard P-Y, Mirzaei N, Eskandari-Ghadi M, Cornou C, Haghshenas E (2010) An extended MSPAC method in circular arrays. Geophys J Int 182(3):1431–1437

    Article  Google Scholar 

  • Snieder R (2004) Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E Stat Phys Plasmas Fluids Rel Interdiscipl Top 69:120. https://doi.org/10.1103/PhysRevE.69.046610

    Article  Google Scholar 

  • Song X, Tang L, Lv X, Fang H, Gu H (2012) Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J Appl Geophys 84:1–13

    Article  Google Scholar 

  • Song Y, Seol SJ, Byun J, Hayashi K, Tan S (2022) Imaging subsurface structure over the Xiadian fault using P waves extracted from urban traffic noise. Geophys J Int 231(1):256–268. https://doi.org/10.1093/gji/ggac185

    Article  Google Scholar 

  • Wang J, Wu G, Chen X (2019) Frequency-bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data. J Geophys Res: Solid Earth 124(4):3708–3723

    Article  Google Scholar 

  • Wathelet M, Jongmans D, Ohrnberger M (2004) Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf Geophys 2(4):211–221

    Article  Google Scholar 

  • Xia JH, Miller RD, Park CB, Tian G (2003) Inversion of high frequency surface waves with fundamental and higher modes. J Appl Geophys 52(1):45–57

    Article  Google Scholar 

  • Xia J, Xu Y, Miller RD (2007) Generating an image of dispersive energy by frequency decomposition and slant stacking. Pure Appl Geophys 164(5):941–956

    Article  Google Scholar 

  • Yan Y, Li J, Huai N, Guan J, Liu H (2022a) Two-array analysis of passive surface waves with continuous wavelet transform and plane-wave-based beamforming. J Appl Geophys 197:104526

    Article  Google Scholar 

  • Yan Y, Chen X, Huai N, Guan J (2022b) Modern inversion workflow of the multimodal surface wave dispersion curves: staging strategy and Pattern search with embedded Kuhn–Munkres algorithm. Geophys J Int 231(1):47–71

    Article  Google Scholar 

  • Yao H, van der Hilst RD, de Hoop MV (2006) Surface-wave array tomography in SE Tibet from ambient seismic noise and two-array analysis—I Phase velocity maps. Geophys J Int 166(2):732–744

    Article  Google Scholar 

  • Yao H, Beghein C, Van Der Hilst RD (2008) Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure. Geophys J Int 173(1):205–219. https://doi.org/10.1111/j.1365-246X.2007.03696.x

    Article  Google Scholar 

  • Zhang ZD, Schuster G, Liu YK, Hanafy SM, Li J (2016) Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient. J Appl Geophys 133:9–15

    Article  Google Scholar 

  • Zhao Y, Li Y (2020) On beamforming of ambient noise recorded by DAS. In: SEG technical program expanded abstracts 2020. Society of exploration geophysicists, pp 515–519. https://doi.org/10.1190/segam2020-3425427.1.

  • Zheng D, Saygin E, Cummins P, Ge Z, Min Z, Cipta A, Yang R(2017) Transdimensional Bayesian seismic ambient noise tomography across SE Tibet. J Asian Earth Sci 134:86–93 https://doi.org/10.1016/j.jseaes.2016.11.011

    Article  Google Scholar 

Download references

Acknowledgements

These works are supported by the Natural Science Foundation of China (42174065, 42222407) and Jilin Provincial Department of Education's scientific research project (JJKH20241295KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Li, J., Yan, Y. et al. Three-Dimensional Urban Subsurface Space Tomography with Dense Ambient Noise Seismic Array. Surv Geophys (2024). https://doi.org/10.1007/s10712-023-09819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10712-023-09819-3

Keywords

Navigation