Skip to main content

Advertisement

Log in

Geotechnical, Geoelectric and Tracing Methods for Earth/Rock-Fill Dam and Embankment Leakage Investigation

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Earth/rock-fill dams and embankments are the main water retaining structures in hydraulic projects, and they can effectively resist floods and are of great significance for protecting people's lives and property. Leakage is a common problem in these structures. Investigation activities, including geotechnical, geoelectric, and tracing methods, are required to locate the leakage path and provide a basis for risk mitigation and reinforcement. These three methods provide information on different leakage characteristics, uncertainties, and spatiotemporal distributions. This work first introduces the micro-mechanism of internal erosion and then, provides a site case base for leakage investigation of earth/rock-fill dams and embankments from all over the world. For each investigation method, the basic principle, investigation process, data interpretation, and future potential are summarized. It should be emphasized that geotechnical, geoelectric, and tracing methods are placed on an equal level to assist dam managers and researchers in selecting the most appropriate method to assess dam leakage against specific geological backgrounds and structural types. Finally, the advantages, disadvantages, and applicable conditions of each investigation method are compared. The role of surface investigation methods and internal investigation methods in different stages of leakage is explained. The application of combined methods is discussed at four levels, and a new combined method is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from Dong et al. (2020)

Fig. 6

Modified with permission from Ikard et al. (2014)

Fig. 7

Modified with permission from Abdulsamad et al. (2019)

Fig. 8

Modified with permission from Ikard et al. (2014)

Fig. 9

Reproduced with permission from Battaglia et al. (2016)

Fig. 10

Modified with permission from Cola et al. (2021) and Khan et al. (2014)

Fig. 11

Modified with permission from Su et al. (2022)

Fig. 12

Similar content being viewed by others

References

  • Abdelazeem M, Gobashy M, Khalil MH, Abdrabou M (2019) A complete model parameter optimization from self-potential data using whale algorithm. J Appl Geophys 170:103825

    Google Scholar 

  • Abdelrahman EM, El-Araby HM, Hassaneen AG, Mahfooz AH (2003) New methods for shape and depth determinations from SP data. Geophysics 68(4):1202–1210

    Google Scholar 

  • Abdulsamad F, Revil A, Soueid Ahmed A, Coperey A, Karaoulis M, Nicaise S, Peyras L (2019) Induced polarization tomography applied to the detection and the monitoring of leaks in embankments. Eng Geol 254:89–101

    Google Scholar 

  • Abedian H, Karami G, Karimi H (2019) The effect of scale on the water leakage from the reservoir and abutment of Beheshtabad Dam. Bull Eng Geol Environ 78(8):5569–5581

    Google Scholar 

  • Abramov NN, D’yakov AY, Kalashnik AI (2019) Identification of water-saturated zones in a protective hydraulic earthen structure by synchronous electromagnetic and seismic sounding. Power Technol Eng 53(2):17–21

    Google Scholar 

  • Adinehvand R, Raeisi E, Hartmann A (2020) An integrated hydrogeological approach to evaluate the leakage potential from a complex and fractured karst aquifer, example of Abolabbas Dam (Iran). Environ Earth Sci 79(22):501

    Google Scholar 

  • Al-Fares W (2011) Contribution of the geophysical methods in characterizing the water leakage in Afamia B dam, Syria. J Appl Geophys 75(3):464–471

    Google Scholar 

  • Al-Fares W, Asfahani J (2018) Evaluation of the leakage origin in Abu Baara earthen dam using electrical resistivity tomography, northwestern Syria. Geofis Int 57(4):223–237

    Google Scholar 

  • Andreini M, Gardoni P, Pagliara S, Sassu M (2019) Probabilistic models for the erosion rate in embankments and reliability analysis of earth dams. Reliab Eng Syst Saf 181:142–155

    Google Scholar 

  • Antoine R, Fauchard C, Fargier Y, Durand E (2015) Detection of leakage areas in an Earth embankment from GPR measurements and permeability logging. Int J Geophys 2015:610172

    Google Scholar 

  • Arato A, Naldi M, Vai L, Chiappone A, Vagnon F, Comina C (2020) Towards a seismo-electric land streamer. In: Proceedings of the 6th international conference on geotechnical and geophysical site characterization, 7–11 September 2020, Budapest

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62

    Google Scholar 

  • Arosio D, Munda S, Tresoldi G, Papini M, Longoni L, Zanzi L (2017) A customized resistivity system for monitoring saturation and seepage in earthen levees: installation and validation. Open Geosci 9(1):457–467

    Google Scholar 

  • Asare A, Appiah-Adjei EK, Owusu-Nimo F, Ali B (2022) Lateral and vertical mapping of salinity along the coast of Ghana using electrical resistivity tomography: the case of central region. Results Geophys Sci 12:100048

    Google Scholar 

  • Battaglia D, Birindelli F, Rinaldi M, Vettraino E, Bezzi A (2016) Fluorescent tracer tests for detection of dam leakages: the case of the Bumbuna dam—Sierra Leone. Eng Geol 205:30–39

    Google Scholar 

  • Beck Y, Khan A, Cunat P, Guidoux C, Artières O, Mars J, Fry J (2010) Thermal monitoring of embankment dams by fiber optics. In: Proceedings of 8th ICOLD European club dam symposium. Innsbruck, Austria, September 22–23, pp 461–465

  • Beff L, Günther T, Vandoorne B, Couvreur V, Javaux M (2013) Three-dimensional monitoring of soil water content in a maize field using electrical resistivity tomography. Hydrol Earth Syst Sci 17(2):595–609

    Google Scholar 

  • Berg SJ, Illman WA (2015) Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site. Groundwater 53(1):71–89

    CAS  Google Scholar 

  • Berhane G, Martens K, Al Farrah N, Walraevens K (2013) Water leakage investigation of micro-dam reservoirs in Mesozoic sedimentary sequences in Northern Ethiopia. J Afr Earth Sci 79:98–110

    Google Scholar 

  • Berhane G, Kebede S, Gebreyohannes T, Martens K, Van Camp M, Walraevens K (2016) An integrated approach for detection and delineation of leakage path from micro-dam reservoir (MDR): a case study from Arato MDR, Northern Ethiopia. Bull Eng Geol Environ 75(1):193–210

    Google Scholar 

  • Bersan S, Koelewijn A, Simonini P (2018) Effectiveness of distributed temperature measurements for early detection of piping in river embankments. Hydrol Earth Syst Sci 22(2):1491–1508

    Google Scholar 

  • Bièvre G, Lacroix P, Oxarango L, Goutaland D, Monnot G, Fargier Y (2017) Integration of geotechnical and geophysical techniques for the characterization of a small earth-filled canal dyke and the localization of water leakage. J Appl Geophys 139:1–15

    Google Scholar 

  • Binley A, Slater LD, Fukes M, Cassiani G (2005) Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resour Res 41(12):W12417

    Google Scholar 

  • Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51(6):3837–3866

    Google Scholar 

  • Biswas A, Sharma S (2015) Interpretation of self-potential anomaly over idealized bodies and analysis of ambiguity using very fast simulated annealing global optimization technique. Near Surf Geophys 13(2):179–195

    Google Scholar 

  • Bohling GC, Butler JJ Jr, Zhan X, Knoll MD (2007) A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities. Water Resour Res 43(5):W05430

    Google Scholar 

  • Bolèkve J, Revil A, Janod F, Mattiuzzo JL, Fry JJ (2009) Preferential fluid flow pathways in embankment dams imaged by self-potential tomography. Near Surf Geophys 7(5–6):447–462

    Google Scholar 

  • Bolève A, Janod F, Revil A, Lafon A, Fry JJ (2011) Localization and quantification of leakages in dams using time-lapse self-potential measurements associated with salt tracer injection. J Hydrol 403(3–4):242–252

    Google Scholar 

  • Bolève A, Vandemeulebrouck J, Grangeon J (2012) Dyke leakage localization and hydraulic permeability estimation through self-potential and hydro-acoustic measurements: self-potential ‘abacus’ diagram for hydraulic permeability estimation and uncertainty computation. J Appl Geophys 86:17–28

    Google Scholar 

  • Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428

    Google Scholar 

  • Brauchler R, Liedl R, Dietrich P (2003) A travel time based hydraulic tomographic approach. Water Resour Res 39(12):1370

    Google Scholar 

  • Brauchler R, Cheng JT, Dietrich P, Everett M, Johnson B, Liedl R, Sauter M (2007) An inversion strategy for hydraulic tomography: coupling travel time and amplitude inversion. J Hydrol 345(3):184–198

    Google Scholar 

  • Brauchler R, Doetsch J, Dietrich P, Sauter M (2012) Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography. Water Resour Res 48(3):W03531

    Google Scholar 

  • Bukowska-Belniak B, Leśniak A (2017) Image processing of leaks detection in sequence of infrared images. Meas Autom Monit 63:131–134

    Google Scholar 

  • Busato L, Boaga J, Peruzzo L, Himi M, Cola S, Bersan S, Cassiani G (2016) Combined geophysical surveys for the characterization of a reconstructed river embankment. Eng Geol 211:74–84

    Google Scholar 

  • Camarero PL, Moreira CA, Pereira HG (2019) Analysis of the physical integrity of earth dams from electrical resistivity tomography (ERT) in Brazil. Pure Appl Geophys 176(12):5363–5375

    Google Scholar 

  • Cao J, Yuan B, Bai Y (2021) Simulation study on image characteristics of typical GPR targets in water conservancy projects. Geofluids 2021:5550620

    Google Scholar 

  • Cardiff M, Bakhos T, Kitanidis PK, Barrash W (2013) Aquifer heterogeneity characterization with oscillatory pumping, Sensitivity analysis and imaging potential. Water Resour Res 49(9):5395–5410

    Google Scholar 

  • Carlsten S, Johansson S, Wörman A (1995) Radar techniques for indicating internal erosion in embankment dams. J Appl Geophys 33(1–3):143–156

    Google Scholar 

  • Cassiani G, Bruno V, Villa A, Fusi N, Binley AM (2006) A saline trace test monitored via time-lapse surface electrical resistivity tomography. J Appl Geophys 59(3):244–259

    Google Scholar 

  • Chambers JE, Ogilvy R, Kuras O, Cripps J, Meldrum P (2002) 3D electrical imaging of known targets at a controlled environmental test site. Environ Geol 41(6):690–704

    Google Scholar 

  • Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 125(4):472–484

    Google Scholar 

  • Chambers J, Gunn D, Wilkinson P, Meldrum PI, Haslam E, Holyoake S, Kirkham M, Kuras O, Merritt A, Wragg J (2014) 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surf Geophys 12(1):61–72

    Google Scholar 

  • Chen C, Liu J, Xia J, Li Z (2006) Integrated geophysical techniques in detecting hidden dangers in river embankments. J Environ Eng Geophys 11:83–94

    Google Scholar 

  • Chen YF, Hu SH, Hu R, Zhou CB (2015) Estimating hydraulic conductivity of fractured rocks from high-pressure packer tests with an Izbash’s law-based empirical model. Water Resour Res 51(4):2096–2118

    Google Scholar 

  • Chen J, Cheng F, Xiong F, Ge Q, Zhang S (2016) An experimental study: Fiber Bragg grating–hydrothermal cycling integration system for seepage monitoring of rockfill dams. Struct Health Monit 16(1):50–61

    Google Scholar 

  • Chen X, Guo Z, Liu C, Liu J, Wu Q (2022) Groundwater detection using the Pseudo-3D Resistivity method: a history of case studies. Appl Sci 12(13):6788

    CAS  Google Scholar 

  • Cheng Q, Tang CS, Lin ZZ, Tian BG, Shi B (2022) Measurement of water content at bare soil surface with infrared thermal imaging technology. J Hydrol 615:128715

    Google Scholar 

  • Cho IK, Jeong DB (2022) 4D inversion of resistivity monitoring data with adaptive time domain regularization. J Appl Geophys 198(4):104559

    Google Scholar 

  • Cho IK, Kim JH (2010) Discussion: on negative apparent resistivity in the dipole-dipole electric survey. Explor Geophys 41:128–131

    Google Scholar 

  • Cho IK, Yeom JY (2007) Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam. Geophysics 72(2):G31–G38

    Google Scholar 

  • Cho IK, Ha IS, Kim KS, Ahn HY, Lee S, Kang HJ (2014) 3D effects on 2D resistivity monitoring in earth-fill dams. Near Surf Geophys 12(1):73–81

    Google Scholar 

  • Ciftci E, Sahin AU (2023) Regression-based interpretation method for confined aquifer pumping tests. J Hydrol Eng 28(2):04022041

    Google Scholar 

  • Cola S, Girardi V, Bersan S, Simonini P, Schenato L, De Polo F (2021) An optical fiber-based monitoring system to study the seepage flow below the landside toe of a river levee. J Civ Struct Health Monit 11(3):691–705

    Google Scholar 

  • Comina C, Vagnon F, Arato A, Fantini F, Naldi M (2020) A new electric streamer for the characterization of river embankments. Eng Geol 276:105770

    Google Scholar 

  • Coplen TB (1995) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Geothermics 24(5–6):707–712

    Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiogi E (ed) Stable isotopesin oceanographic studies and paleotemperatures, Spoleto, Italy. V. Lishi e F, Pisa, pp 9–130

    Google Scholar 

  • Dai QW, Lin FP, Wang XP, Feng DS, Bayless RC (2017) Detection of concrete darn leakage using an integrated geophysical technique based on flow-field fitting method. J Appl Geophys 140:168–176

    Google Scholar 

  • Dashti Z, Nakhaei M, Vadiati M, Karami GH, Kisi O (2022) A literature review on pumping test analysis (2000–2022). Environ Sci Pollut Res 30:9184–9206

    Google Scholar 

  • De Carlo L, Farzamian M, Turturro AC, Caputo MC (2023) Time-lapse ERT, moment analysis, and numerical modeling for estimating the hydraulic conductivity of unsaturated rock. Water 15(2):332

    Google Scholar 

  • Dezert T, Fargier Y, Palma Lopes S, Côte P (2019) Geophysical and geotechnical methods for fluvial levee investigation: a review. Eng Geol 260:105206

    Google Scholar 

  • Dezert T, Lopes SP, Fargier Y, Saussaye L, Cote P (2021) Data fusion of in situ geophysical and geotechnical information for levee characterization. Bull Eng Geol Environ 80:5181–5197

    Google Scholar 

  • Dezert T, Fargier Y, Lopes SP, Guihard V (2022) Canal dike characterization by means of electrical resistivity, shear wave velocity and particle size data fusion. J Appl Geophys 204:104749

    Google Scholar 

  • Di Maio R, Piegari E, Todero G, Fabbrocino S (2015) A combined use of archie and van Genuchten models for predicting hydraulic conductivity of unsaturated pyroclastic soils. J Appl Geophys 112:249–255

    Google Scholar 

  • Di Maio R, Rani P, Piegari E, Milano L (2016) Self-potential data inversion through a genetic-price algorithm. Comput Geosci 94:86–95

    Google Scholar 

  • Di Q, Wang M (2010) Determining areas of leakage in the Da Ye Dam using multi-electrode resistivity. Bull Eng Geol Environ 69(1):105–109

    CAS  Google Scholar 

  • Domanski M, Quinn D, Day-Lewis FD, Briggs MA, Werkema D, Lane JW (2020) DTSGUI: a Python program to process and visualize fiber-optic distributed temperature sensing data. Groundwater 58(5):799–804

    CAS  Google Scholar 

  • Dong H, Chen J, Li X (2016) Delineation of leakage pathways in an earth and rockfill dam using multi-tracer tests. Eng Geol 212:136–145

    Google Scholar 

  • Dong H, Li X, Yeh TCJ, Ge J (2020) Diagnosis of concentrated leakage channel embedded in dam base by means of hydraulic tomography. Bull Eng Geol Environ 79(6):2871–2881

    Google Scholar 

  • El-Araby HM (2004) A new method for complete quantitative interpretation of self-potential anomalies. J Appl Geophys 55(3):211–224

    Google Scholar 

  • Eng KR (2014) The thermal monitoring method—a quality change in the monitoring of seepage and erosion processes in dikes and earth dams. Mod Monit Solut Dams Dikes Vietnam 2014:33–41

    Google Scholar 

  • Fan Y, Hu LT, Wang HL, Liu X (2020) Machine learning methods for improved understanding of a pumping test in heterogeneous aquifers. Water 12(5):1342

    Google Scholar 

  • Fan D, Chen Q, Qi L, Wang C (2021) Comparison of methods to calculate coefficient of permeability of sandy cobble aquifer based on pumping tests. Hydro-Sci Eng 4:54–60 (in Chinese)

    Google Scholar 

  • Fang X, Zeng Y, Xiong F, Chen J, Cheng F (2021) A review of previous studies on dam leakage based on distributed optical fiber thermal monitoring technology. Sens Rev 41(4):350–360

    Google Scholar 

  • Fargier Y, Lopes SP, Fauchard C, François D, Côte P (2014) DC-electrical resistivity imaging for embankment dike investigation: a 3D extended normalisation approach. J Appl Geophys 103:245–256

    Google Scholar 

  • Farquharson CG, Oldenburg DW (1998) Non-linear inversion using general measures of data misfit and model structure. Geophys J Int 134(1):213–227

    Google Scholar 

  • Fauchard C, Meriaux P (2007) Geophysical and geotechnical methods for diagnosing flood protection dikes. Editions Quae

    Google Scholar 

  • Foster M, Fell R, Spannagle M (2000) The statistics of embankment dam failures and accidents. Can Geotech J 37(5):1000–1024

    Google Scholar 

  • Gance J, Malet JP, Supper R, Sailhac P, Ottowitz D, Jochum B (2016) Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides. J Appl Geophys 126:98–115

    Google Scholar 

  • Gendrey S, Granier V, Azemard P, Payan C (2019) Improving the diagnosis of coastal earth-filled dikes combining geophysical methods by data fusion. In: AGU fall meeting 2019. AGU

  • Giampaolo V, Calabrese D, Rizzo E (2016) Transport processes in porous media by self-potential method. Appl Environ Soil Sci 2016:3951486

    Google Scholar 

  • Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer test in karst hydrogeology and speleology. Int J Speleol 37(1):27–40

    Google Scholar 

  • Gunn DA, Chambers JE, Uhlemann S, Wilkinson PB, Meldrum PI, Dijkstra TA, Haslam E, Kirkham M, Wragg J, Holyoake S, Hughes PN, Hen-Jones R, Glendinning S (2014) Moisture monitoring in clay embankments using electrical resistivity tomography. Constr Build Mater 92:82–94

    Google Scholar 

  • Guo Y, Cui Y, Xie J, Luo Y, Zhang P, Liu H, Liu J (2022) Seepage detection in earth-filled dam from self-potential and electrical resistivity tomography. Eng Geol 306:106750

    Google Scholar 

  • Gurbuz A, Peker I, Aydin K, Tugcu O, Acan S (2017) The application of distributed fibre sensors in determination of seepage in Derince Dam. Int J Sens Netw 25(3):176–183

    Google Scholar 

  • Gutierrez F, Mozafari M, Carbonel D, Gomez R, Raeisi E (2015) Leakage problems in dams built on evaporites. The case of La Loteta Dam (NE Spain), a reservoir in a large karstic depression generated by interstratal salt dissolution. Eng Geol 185:139–154

    Google Scholar 

  • Haas AK, Revil A, Karaoulis M, Frash L, Hampton J, Gutierrez M, Mooney M (2013) Electric potential source localization reveals a borehole leak during hydraulic fracturing. Geophysics 78(2):D93–D113

    Google Scholar 

  • Han Z, Kang XY, Wu JC, Shi XQ (2022) Characterization of the non-Gaussian hydraulic conductivity field via deep learning-based inversion of hydraulic-head and self-potential data. J Hydrol 610:127830

    Google Scholar 

  • Hayashi K, Inazaki T, Kitao K, Kita T (2013) Statistical estimation of geotechnical soil parameters in terms of cross-plots of S-wave velocity and resistivity in Japanese levees. In: Society of exploration geophysicists international exposition and 83rd annual meeting, SEG 2013: expanding geophysical frontiers, pp 1259–1263

  • Hilbich C, Fuss C, Hauck C (2011) Automated time-lapse ERT for improved process analysis and monitoring of frozen ground. Permafrost Periglac Process 22(4):306–319

    Google Scholar 

  • Hojat A, Arosio D, Ivanov VI, Longoni L, Papini M, Scaioni M, Tresoldi G, Zanzi L (2019) Geoelectrical characterization and monitoring of slopes on a rainfall-triggered landslide simulator. J Appl Geophys 170:103844

    Google Scholar 

  • Hojat A, Arosio D, Ivanov VI, Loke MH, Longoni L, Papini M, Tresoldi G, Zanzi L (2020) Quantifying seasonal 3D effects for a permanent electrical resistivity tomography monitoring system along the embankment of an irrigation canal. Near Surf Geophys 18(4):427–443

    Google Scholar 

  • Hördt A, Blaschek R, Kemna A, Zisser N (2007) Hydraulic conductivity estimation from induced polarisation data at the field scale—the Krauthausen case history. J Appl Geophys 62(1):33–46

    Google Scholar 

  • Hu Z, Wang Y, Ye M, Liu M, Ding J (2021) Localization of potential leakage areas inside plain reservoirs using waterborne electrical resistivity tomography. J Environ Eng Geophys 26(2):133–143

    Google Scholar 

  • Hu Z, Liu M, Wang Y, Ye M, Li S (2022) Geophysical assessment of freshwater intrusion into saline aquifers beneath plain reservoirs. J Environ Eng Geophys 27(1):13–22

    Google Scholar 

  • Huang Z, Li XZ, Li SJ, Zhao K, Zhang R (2018) Investigation of the hydraulic properties of deep fractured rocks around underground excavations using high-pressure injection tests. Eng Geol 245:180–191

    Google Scholar 

  • Huang Q, Liu D, Wei X, Yang Y (2021) Reasons for China owning largest number of water dams in the world. J Hydroelectr Eng 40(9):35–45 (in Chinese)

    Google Scholar 

  • Hvorslev M (1951) Time lag and soil permeability in ground water observations. U.S. Army Corps of Engrs, Waterways Experiment Station, Vicksburg, MI, Bull., 36

  • Ikard SJ, Revil A, Jardani A, Woodruff WF, Parekh M, Mooney M (2012) Saline pulse test monitoring with the self-potential method to nonintrusively determine the velocity of the pore water in leaking areas of earth dams and embankments. Water Resour Res 48(4):W04201

    Google Scholar 

  • Ikard SJ, Revil A, Schmutz M, Karaoulis M, Jardani A, Mooney M (2014) Characterization of focused seepage through an earthfill dam using geoelectrical methods. Groundwater 52(6):952–965

    CAS  Google Scholar 

  • Ikard SJ, Rittgers J, Revil A, Mooney MA (2015) Geophysical investigation of seepage beneath an earthen dam. Groundwater 53(2):238–250

    CAS  Google Scholar 

  • Inagaki T, Okamoto Y (1997) Diagnosis of the leakage point on a structure surface using infrared thermography in near ambient conditions. NDT&E Int 30(3):135–142

    Google Scholar 

  • Jardani A, Dupont JP, Revil A (2006) Self-potential signals associated with preferential groundwater flow pathways in sinkholes. J Geophys Res-Solid Earth 111(B9):B09204

    Google Scholar 

  • Jardani A, Revil A, Dupont JP (2013) Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging. Adv Water Resour 52:62–77

    Google Scholar 

  • Jiang X, Tan H, Jiang S, Lai S (2021) A new approach for accurate detection of leakage paths from multiple-Wenner arrays inverted resistivity imaging in embankment dam. IOP Conf Ser Earth Environ Sci 660(1):012070

    Google Scholar 

  • Jiao JJ, Mao R (2022) Analytical study of falling-head test in confined aquifer with consideration of non-instantaneous injection. J Hydrol 616:128834

    Google Scholar 

  • Jiménez S, Brauchler R, Bayer P (2013) A new sequential procedure for hydraulic tomographic inversion. Adv Water Resour 62:59–70

    Google Scholar 

  • Johansson S, Dahlin T (1996) Seepage monitoring in an earth embankment dam by repeated resistivity measurements. Eur J Eng Environ Geophys 1(3):229–247

    Google Scholar 

  • Johansson S (1997) Seepage monitoring in embankment dams. Doctoral thesis, TRITAAMI PHD 1014, Royal Institute of Technology, Stockholm

  • Johnson TC, Versteeg RJ, Ward A, Day-Lewis FD, Revil A (2010) Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data. Geophysics 75(4):WA27–WA41

    Google Scholar 

  • Kamble RK, Panvalkar GA, Chunade AD (2011) Mapping seepage in the tailrace channel, Bhama-Askhed dam: a case study. Bull Eng Geol Environ 70(4):643–649

    Google Scholar 

  • Kaouane C (2016) Polarisation provoquée spectrale pour la caractérisation géotechnique des sols compactés: évaluation pratique en laboratoire. Ph.D. thesis, Ecole Centralede Nantes

  • Karaoulis MC, Kim JH, Tsourlos PI (2011) 4D active time constrained resistivity inversion. J Appl Geophys 73:25–34

    Google Scholar 

  • Khalil MA, Monterio Santos FA (2009) Influence of degree of saturation in the electric resistivity–hydraulic conductivity relationship. Surv Geophys 30(6):601–615

    Google Scholar 

  • Khan AA, Vrabie V, Mars JI, Girard A, D’Urso G (2008) A source separation technique for processing of thermometric data from fiber-optic DTS measurements for water leakage identification in dikes. IEEE Sens J 8(7–8):1118–1129

    Google Scholar 

  • Khan AA, Vrabie V, Beck YL, Mars JI, D’Urso G (2014) Monitoring and early detection of internal erosion: distributed sensing and processing. Struct Health Monit 13(5):562–576

    Google Scholar 

  • Kim KJ, Cho IK (2011) Time-lapse inversion of 2D resistivity monitoring data with a spatially varying cross-model constraint. J Appl Geophys 74(2):114–122

    Google Scholar 

  • Kim JH, Yi MJ, Park SG, Kim JG (2009) 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. J Appl Geophys 68(4):522–532

    Google Scholar 

  • Kim KY, Jeon KM, Hong MH, Park YG (2011) Detection of anomalous features in an earthen dam using inversion of P-wave first-arrival times and surface-wave dispersion curves. Explor Geophys 42(1):42–49

    CAS  Google Scholar 

  • Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419

    Google Scholar 

  • Kitanidis PK, Lee J (2014) Principal component geostatistical approach for large-dimensional inverse problems. Water Resour Res 50(7):5428–5443

    CAS  Google Scholar 

  • Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resour Res 19(3):677–690

    Google Scholar 

  • Klammler H, Layton L, Nemer B, Hatfield K, Mohseni A (2017) Theoretical aspects for estimating anisotropic saturated hydraulic conductivity from in-well or direct-push probe injection tests in uniform media. Adv Water Resour 104:242–254

    Google Scholar 

  • Koch K, Revil A, Holliger K (2012) Relating the permeability of quartz sands to their grain size and spectral induced polarization characteristics. Geophys J Int 190(1):230–242

    CAS  Google Scholar 

  • Kuppel S, Tetzlaff D, Maneta MP, Soulsby C (2018) EcH2O-iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model. Geosci Model Dev 11(7):3045–3069

    CAS  Google Scholar 

  • Kuras O, Meldrum PI, Beamish D, Ogilvy RD, Lala D (2007) Capacitive resistivity imaging with towed arrays. J Environ Eng Geophys 12:267–279

    Google Scholar 

  • Kuras O, Pritchard JD, Meldrum PI, Chambers JE, Wilkinson PB, Ogilvy RD, Wealthall GP (2009) Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). C R Geosci 341(10–11):868–885

    Google Scholar 

  • Lee KS, Cho IK (2020) Negative apparent resistivities in surface resistivity measurements. J Appl Geophys 176:104010

    Google Scholar 

  • Lee SK, Cho SJ, Song Y, Chung SH (2002) Capacitively-coupled resistivity method—applicability and limitation. Geophys Explor 5(1):23–32

    Google Scholar 

  • Lee JY, Kim HS, Choi YK, Kim JW, Cheon JY, Yi MJ (2007) Sequential tracer tests for determining water seepage paths in a large rockfill dam, Nakdong River basin, Korea. Eng Geol 89(3):300–315

    Google Scholar 

  • Lee JY, Kim HS, Yun ST, Kwon JS (2009) Factor and cluster analyses of water chemistry in and around a large rockfill dam: Implications for water leakage. J Geotech Geoenviron Eng 135(9):1254–1263

    CAS  Google Scholar 

  • Lee B, Oh S, Yi MJ (2020) Mapping of leakage paths in damaged embankment using modified resistivity array method. Eng Geol 266:105469

    Google Scholar 

  • Leite O, Gance J, Texier B, Truffert C (2017) Large 3D resistivity and induced polarization acquisition using the fullwaver system: towards an adapted processing methodology. EGU Gen Assemb Conf Abstr 19:12775

    Google Scholar 

  • Lesmes D, Friedman SP (2005) Relationships between the electrical and hydrogeological properties of rocks and soils. In: Rubin Y, Hubbard S (eds) Hydrogeophysics, water science and technology library, chapter 4, vol 50:523. Springer, pp 87–128

    Google Scholar 

  • Li F, Li K, Lu K, Li Z (2020) Research on the application of magnetic resonance sounding in dam leakage detection. IOP Conf Ser Earth Environ Sci 569:012097

    Google Scholar 

  • Lin YF, Yeh HD (2022) A semi-analytical solution for slug test by considering near-well formation damage and nonlinear flow. Water Resour Res 58(3):e2021WR031368

    Google Scholar 

  • Lin CH, Lin CP, Drnevich VP (2012) TDR method for compaction quality control: multi evaluation and sources of error. Geotech Test J 35(5):817–826

    Google Scholar 

  • Lin CP, Hung YC, PoLin W, Yu ZH (2014) Performance of 2D ERT in investigation of abnormal seepage: a case study at the Hsin-Shan earth dam in Taiwan. J Environ Eng Geophys 9(2):101–112

    Google Scholar 

  • Lin CH, Lin CP, Hung YC, Chung CC, Wu PL, Liu HC (2018) Application of geophysical methods in a dam project: life cycle perspective and Taiwan experience. J Appl Geophys 158:82–92

    Google Scholar 

  • Liu X, Illman WA, Craig AJ, Zhu J, Yeh TCJ (2007) Laboratory sandbox validation of transient hydraulic tomography. Water Resour Res 43(5):W05404

    Google Scholar 

  • Liu S, Wang X, Lu Q, Li H, Wang Y, Deng L (2019) Dam leakage detection by borehole radar, a case history study. Remote Sens 11(8):969

    Google Scholar 

  • Liu B, Wang C, Liu Z, Xu Z, Nie L, Pang Y, Wang N, Feng S (2021) Cascade surface and borehole geophysical investigation for water leakage: a case study of the Dehou reservoir, China. Eng Geol 294:106364

    Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudo sections using a quasi-Newton method. Geophys Prospect 44(1):131–152

    Google Scholar 

  • Loke MH, Wilkinson PB, Uhlemann SS, Chambers JE, Oxby LS (2014) Computation of optimized arrays for 3-D electrical imaging surveys. Geophys J Int 199(3):1751–1764

    Google Scholar 

  • Loperte A, Soldovieri F, Lapenna V (2015) Monte Cotugno Dam monitoring by the electrical resistivity tomograph. IEEE J Sel Top Appl Earth Observ Remote Sens 8(11):5346–5351

    Google Scholar 

  • Loperte A, Soldovieri F, Palombo A, Santini F, Lapenna V (2016) An integrated geophysical approach for water infiltration detection and characterization at Monte Cotugno rock-fill dam (southern Italy). Eng Geol 211:162–170

    Google Scholar 

  • Lubbe R, de Lange SS, Vivier JJP (2022) A review of slug tests analysis on South African aquifers in potential yield and transmissivity estimations. J Hydrol-Reg Stud 40:101008

    Google Scholar 

  • Manewell N, Doherty J, Hayes P (2023) Spatial averaging implied in aquifer test interpretation: the meaning of estimated hydraulic properties. Front Earth Sci 10:1079287

    Google Scholar 

  • María GR, Leonor RS, Javier BB, Raúl SC (2013) Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters. Agric Water Manag 120:72–78

    Google Scholar 

  • Martínez-Moreno FJ, Delgado-Ramos F, Galindo-Zaldívar J, Martín-Rosales W, López-Chicano M, González-Castillo L (2018) Identification of leakage and potential areas for internal erosion combining ERT and IP techniques at the Negratín Dam left abutment (Granada, southern Spain). Eng Geol 240:74–80

    Google Scholar 

  • Masi M, Ferdos F, Losito G, Solari L (2020) Monitoring of internal erosion processes by time-lapse electrical resistivity tomography. J Hydrol 589:125340

    Google Scholar 

  • Mebrahtu G, Abay A, Hailu G, Hagos M (2020) Electrical resistivity imaging and engineering geological investigation of Gereb Segen dam, northern Ethiopia. Bull Eng Geol Environ 79(1):83–95

    CAS  Google Scholar 

  • Mehr SS, Field MS (2022) Investigating seepage paths at the Golfaraj earthen dam, NW Iran. Q J Eng Geol Hydrogeol 55(2):qjegh2021-053

  • Menke W (2012) Chapter 1—describing inverse problems. In: Menke W (ed) Geophysical data analysis: discrete inverse theory, 3rd edn. Academic Press, Boston, pp 1–14

    Google Scholar 

  • Michalis P, Sentenac P (2021) Subsurface condition assessment of critical dam infrastructure with non-invasive geophysical sensing. Environ Earth Sci 80(17):556

    Google Scholar 

  • Middlebrooks TA (1953) Earth-dam practice in the United States. Trans Am Soc Civ Eng Centen Vol 118:697–721

    Google Scholar 

  • Miller CR, Routh PS, Brosten TR, McNamara JP (2008) Application of time-lapse ERT imaging to watershed characterization. Geophysics 73(3):G7–G17

    Google Scholar 

  • Minsley BJ, Burton BL, Ikard S, Powers MH (2011) Hydrogeophysical investigations at Hidden Dam, Raymond, California. J Environ Eng Geophys 16(4):145–164

    Google Scholar 

  • Moayedi H, Huat BBK, Ali TAM, Haghighi AT, Asadi A (2010) Analysis of longitudinal cracks in Crest of Doroodzan Dam. Electron J Geotech Eng 15:337–347

    Google Scholar 

  • Mollaret C, Hilbich C, Pellet C, Flores-Orozco A, Delaloye R, Hauck C (2019) Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. Cryosphere 13(10):2557–2578

    Google Scholar 

  • Monego M, Cassiani G, Deiana R, Putti M, Passadore G, Altissimo L (2010) A tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface electrical resistivity tomography. Geophysics 75(4):WA61–WA73

    Google Scholar 

  • Monteiro Santos FA (2010) Inversion of self-potential of idealized bodies’ anomalies using particle swarm optimization. Comput Geosci 36(9):1185–1190

    Google Scholar 

  • Mozafari M, Raeisi E (2017) Leakage paths at the Lar Dam site, Northern Iran. Q J Eng Geol Hydrogeol 50(4):444–453

    Google Scholar 

  • Mozafari M, Raeisi E, Guerrero J (2018) Contribution of spectral coherency analysis and tracer test to study leakage at the Doosti Dam reservoir, Iran and Turkmenistan. Environ Earth Sci 77(4):139

    Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Google Scholar 

  • Mull DS, Liebermann TD, Smoot JL, Woosley LHJ (1988) Application of dye-tracing techniques for determining solute-transport characteristics of groundwater in karst terranes. EPA/904/9-88-001. U.S.EPA, Region IV, Atlanta

  • Nan S, Ren J, Ni F, Zhang L, He X (2022) Heat tracing of embankment dam leakage: Laboratory experiments and 2D numerical modelling. J Hydrol 608:127663

    Google Scholar 

  • Niederleithinger E, Weller A, Lewis R (2012) Evaluation of geophysical techniques for dike inspection. J Environ Eng Geophys 17(4):185–195

    Google Scholar 

  • Ning ZR, Luo N, Inaba K, Nakashima T, Shimizu T, Illman WA (2023) Three-dimensional hydraulic tomography analyses to investigate commingling issues of reproducibility, data density, and geological prior models. J Hydrol 616:128785

    Google Scholar 

  • Noble J, Arzoo Ansari MD (2017) Environmental isotope investigation for the identification of source of springs observed in the hillock on the left flank of Gollaleru Earthen Dam, Andhra Pradesh, India. J Earth Syst Sci 126(5):67

    Google Scholar 

  • Noraee-Nejad S, Sedghi-Asl M, Parvizi M, Shokrollahi A (2021) Salt tracer experiment through an embankment dam, Iran. J Sci Technol-Trans Civ Eng 45(4):2787–2797

    Google Scholar 

  • Okay Ahi G, Leroy P, Ghorbani A, Cosenza P, Camerlynck C, Cabrera J, Florsch N (2014) Spectral induced polarization of clay-sand mixtures: experiments and modeling. Geophysics 79(6):E353–E375

    Google Scholar 

  • Oldenborger GA, Knoll MD, Routh PS, LaBrecque DJ (2007) Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer. Geophysics 72(4):F177–F187

    Google Scholar 

  • Oliveti I, Cardarelli E (2019) Self-potential data inversion for environmental and hydrogeological investigations. Pure Appl Geophys 176(8):3607–3628

    Google Scholar 

  • Park D, Jessop ML (2018) Validation of a new magnetometric survey for mapping 3D subsurface leakage paths. Geosci J 22(6):891–902

    Google Scholar 

  • Pechstein A, Attinger S, Krieg R, Copty NK (2016) Estimating transmissivity from single-well pumping tests in heterogeneous aquifers. Water Resour Res 52(1):495–510

    Google Scholar 

  • Peng TR, Wang CH (2008) Identification of sources and causes of leakage on a zoned earth dam in northern Taiwan: hydrological and isotopic evidence. Appl Geochem 23(8):2438–2451

    CAS  Google Scholar 

  • Perri MT, Boaga J, Bersan S, Cassiani G, Cola S, Deiana R, Simonini P, Patti S (2014) River embankment characterization: the joint use of geophysical and geotechnical techniques. J Appl Geophys 110:5–22

    Google Scholar 

  • Perzlmaier S, Aufleger M, Dornstädter J (2007) Detection of internal erosion by means of the active temperature method. In: Proceedings of the assessment of the risk of internal erosion of water retaining structures: dams, dykes and levees. Intermediate report of the European Working Group of ICOLD, Oberaudorf, Germany, 17–19 September 2007, vol 49

  • Preko K, Scheuermann A, Wilhelm H (2009) Comparison of invasive and non-invasive electromagnetic methods in soil water content estimation of a dike model. J Geophys Eng 6(2):146–161

    Google Scholar 

  • Qi Y, El-Kaliouby H, Revil A, Soueid Ahmed A, Ghorbani A, Li J (2019) Three-dimensional modeling of frequency- and time-domain electromagnetic methods with induced polarization effects. Comput Geosci 124:85–92

    Google Scholar 

  • Qiu H, Hu R, Huang Y, Gwenzi W (2022) Detection and quantification of dam leakages based on tracer tests: a field case study. Water 14(9):1448

    Google Scholar 

  • Radzicki K, Gołębiowski T, Ćwiklik M, Stoliński M (2021) A new levee control system based on geotechnical and geophysical surveys including active thermal sensing: a case study from poland. Eng Geol 293:106316

    Google Scholar 

  • Radzicki K, Bonelli S (2010) Thermal seepage monitoring in the earth dams with impulse response function analysis model. In: 8th ICOLD European club symposium, Innsbruck, Austria, pp 624–629

  • Rahimi S, Wood CM, Coker F, Moody T, Bernhardt-Barry M, Mofarraj Kouchaki B (2018) The combined use of MASW and resistivity surveys for levee assessment: a case study of the Melvin Price Reach of the Wood River Levee. Eng Geol 241:11–24

    Google Scholar 

  • Rajabi AM, Khodaparast M, Edalat A (2015) Investigation of the geological and geotechnical characteristics of the Tanguyeh dam site in southeastern Iran. Bull Eng Geol Environ 74(3):861–872

    CAS  Google Scholar 

  • Raji WO, Aluko KO (2021) Investigating the cause of excessive seepage in a dam foundation using seismic and electrical surveys-a case study of Asa Dam, West Africa. Bull Eng Geol Environ 80(8):6445–6455

    Google Scholar 

  • Ratiat A, Khettal T, Meddi M (2020) The piezometric and isotopic analysis of leaks in earth dams: the case of the fountain of Gazelle dam, Biskra, Algeria. Environ Earth Sci 79(6):138

    CAS  Google Scholar 

  • Ren J, Zhang W, Yang J (2019a) Morris sensitivity analysis for hydrothermal coupling parameters of embankment dam: a case study. Math Probl Eng 2019:2196578

    Google Scholar 

  • Ren J, Zhang W, Yang J, Shen Z, Zhao J, Zhou Y, Wang Z (2019b) A comparison of numerical and Lu modeling of water flow and heat transport with laboratory experiments. Environ Earth Sci 78(8):267

    Google Scholar 

  • Revil A, Florsch N (2010) Determination of permeability from spectral induced polarization in granular media. Geophys J Int 181(3):1480–1498

    Google Scholar 

  • Revil A, Jardani A (2010) Stochastic inversion of permeability and dispersivities from time lapse self-potential measurements: a controlled sandbox study. Geophys Res Lett 37(11):L11404

    Google Scholar 

  • Revil A, Cathles Iii LM, Losh S, Nunn JA (1998) Electrical conductivity in shaly sands with geophysical applications. J Geophys Res-Solid Earth 103(B10):23925–23936

    Google Scholar 

  • Revil A, Karaoulis M, Johnson T, Kemna A (2012) Review: some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20(4):617–658

    Google Scholar 

  • Revil A, Coperey A, Shao Z, Florsch N, Fabricius IL, Deng Y, Delsman JR, Pauw PS, Karaoulis M, de Louw PGB, van Baaren ES, Dabekaussen W, Menkovic A, Gunnink JL (2017) Complex conductivity of soils. Water Resour Res 53(8):7121–7147

    Google Scholar 

  • Revil A, Schmutz M, Abdulsamad F, Balde A, Beck C, Ghorbani A, Hubbard SS (2021) Field-scale estimation of soil properties from spectral induced polarization tomography. Geoderma 403:115380

    CAS  Google Scholar 

  • Rittgers JB, Revil A, Planes T, Mooney MA, Koelewijn AR (2015) 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization. Geophys J Int 200(2):758–772

    Google Scholar 

  • Robbins BA, Griffiths DV (2021) A two-dimensional, adaptive finite element approach for simulation of backward erosion piping. Comput Geotech 129:103820

    Google Scholar 

  • Robinson DA, Binley A, Crook N, Day-Lewis FD, Ferre TPA, Grauch VJS, Knight R, Knoll M, Lakshmi V, Miller R, Nyquist J, Pellerin L, Singha K, Slater L (2008) Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol Process 22(18):3604–3635

    Google Scholar 

  • Rozycki A, Olalla C, Fonticiella JMR, Cuadra A (2008) Underwater self-potential measurements in the safety assessment of dams. Near Surf Geophys 6(5):307–314

    Google Scholar 

  • Sarkheil H, Noughabi KS, Azimi Y, Rahbari S (2023) Fuzzy soil quality index using resistivity and induced polarization for contamination assessment in a lead and zinc drainage irrigation field study. Ecol Indic 152:110362

    CAS  Google Scholar 

  • Sato M, Kuwano R (2015) Suffusion and clogging by one-dimensional seepage tests on cohesive soil. Soils Found 55(6):1427–1440

    Google Scholar 

  • Sayde C, Gregory C, Gil-Rodriguez M, Tufillaro N, Tyler S, van de Giesen N, English M, Cuenca R, Selker JS (2010) Feasibility of soil moisture monitoring with heated fiber optics. Water Resour Res 46:W06201

    Google Scholar 

  • Sharabiani HEH, Gharavi M (2014) Laboratory investigation on hydraulic conductivity changes in sands due to injection pressure increase. Arab J Geosci 7(7):2761–2769

    Google Scholar 

  • Sharp M, Wallis M, Deniaud F, Hersch-Burdick R, Tourment R, Matheu E, Seda-Sanabria Y, Wersching S, Veylon G, Durand E (2013) The international Levee handbook. CIRIA, London

    Google Scholar 

  • Singha K, Day-Lewis FD, Johnson T, Slater LD (2015) Advances in interpretation of subsurface processes with time-lapse electrical imaging. Hydrol Process 29(6):1549–1576

    Google Scholar 

  • Sjödahl P, Dahlin T, Johansson S, Loke MH (2008) Resistivity monitoring for leakage and internal erosion detection at Hallby embankment dam. J Appl Geophys 65(3):155–164

    Google Scholar 

  • Sjödahl P, Dahlin T, Johansson S (2010) Using the resistivity method for leakage detection in a blind test at the Rossvatn embankment dam test facility in Norway. Bull Eng Geol Environ 69(4):643–658

    Google Scholar 

  • Slater L (2007) Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries-a review. Surv Geophys 28:169–197

    Google Scholar 

  • Slater L, Lesmes DP (2002) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour Res 38(10):31-1–31-13

    Google Scholar 

  • Soderberg K, Good SP, Wang LX, Caylor K (2012) Stable isotopes of water vapor in the vadose zone: A review of measurement and modeling techniques. Vadose Zone J 11(3):1–54

  • Soueid Ahmed A, Jardani A, Revil A, Dupont JP (2014) Hydraulic conductivity field characterization from the joint inversion of hydraulic heads and self-potential data. Water Resour Res 50(4):3502–3522

    Google Scholar 

  • Soueid Ahmed A, Jardani A, Revil A, Dupont JP (2016a) Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests. Water Resour Res 52(9):6769–6791

    Google Scholar 

  • Soueid Ahmed A, Jardani A, Revil A, Dupont JP (2016b) Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data. Adv Water Resour 89:80–90

    Google Scholar 

  • Soueid Ahmed A, Revil A, Gross L (2019a) Multiscale induced polarization tomography in hydrogeophysics: a new approach. Adv Water Resour 134:103451

    Google Scholar 

  • Soueid Ahmed A, Revil A, Steck B, Vergniault C, Jardani A, Vinceslas G (2019b) Self-potential signals associated with localized leaks in embankment dams and dikes. Eng Geol 253:229–239

    Google Scholar 

  • Soueid Ahmed A, Revil A, Abdulsamad F, Steck B, Vergniault C, Guihard V (2020a) Induced polarization as a tool to non-intrusively characterize embankment hydraulic properties. Eng Geol 271:105604

    Google Scholar 

  • Soueid Ahmed A, Revil A, Bolève A, Steck B, Vergniault C, Courivaud JR, Jougnot D, Abbas M (2020b) Determination of the permeability of seepage flow paths in dams from self-potential measurements. Eng Geol 268:105514

    Google Scholar 

  • Springer RK, Gelhar LW (1991) Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response, Cape Cod, Massachusetts. Water Res Invest Rep 91-4034 US Geological Survey

  • Su H, Kang Y (2013) Design of system for monitoring seepage of levee engineering based on distributed optical fiber sensing technology. Int J Distrib Sens Netw 10:358784

    Google Scholar 

  • Su H, Tian S, Kang Y, Xie W, Chen J (2017) Monitoring water seepage velocity in dikes using distributed optical fiber temperature sensors. Autom Constr 76:71–84

    Google Scholar 

  • Su H, Ma J, Zhou R, Wen Z (2022) Detect and identify earth rock embankment leakage based on UAV visible and infrared images. Infrared Phys Technol 122:104105

    Google Scholar 

  • Sumner JS (1976) Chapter 3—theory of induced polarization. In: Sumner JS (ed) Developments in economic geology. Elsevier, pp 47–80

    Google Scholar 

  • Sungkono WDD (2018) Black hole algorithm for determining model parameter in self-potential data. J Appl Geophys 148:189–200

    Google Scholar 

  • Takahashi T, Aizawa T, Murata K, Nishio H, Consultants S, Matsuoka T (2014) Soil permeability profiling on a river embankment using integrated geophysical data. In: Society of exploration geophysicists international exposition and 84th annual meeting SEG 2014, pp 4534–4538

  • Talukdar P, Dey A (2019) Hydraulic failures of earthen dams and embankments. Innov Infrastr Solut 4:42

    Google Scholar 

  • Tresoldi G, Arosio D, Hojat A, Longoni L, Papini M, Zanzi L (2019) Long-term hydrogeophysical monitoring of the internal conditions of river levees. Eng Geol 259:105139

    Google Scholar 

  • Umezawa R, Jinguuji M, Yokota T (2022) Characterization of a river embankment using a non-destructive direct current electrical survey. Near Surf Geophys 20(3):238–252

    Google Scholar 

  • Vagnon F, Comina C, Arato A, Chiappone A, Cosentini RM, Foti S (2022a) Geotechnical screening of linear earth structures: electric and seismic streamer data for hydraulic conductivity assessment of the Arignano Earth Dam, Italy. J Geotech Geoenviron Eng 148(12):04022105

    Google Scholar 

  • Vagnon F, Comina C, Arato A (2022b) Evaluation of different methods for deriving geotechnical parameters from electric and seismic streamer data. Eng Geol 303:106670

    Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Google Scholar 

  • Vogelgesang JA, Holt N, Schilling KE, Gannon M, Tassier-Surine S (2020) Using high-resolution electrical resistivity to estimate hydraulic conductivity and improve characterization of alluvial aquifers. J Hydrol 580:123992

    Google Scholar 

  • Wang W, Jiang X (2013) Influencing factor analysis of water injection test in earthfill dam. Adv Sci Technol Water Resour 33(1):53–57 (in Chinese)

    Google Scholar 

  • Wang T, Chen J, Wang T, Wang S (2015) Entropy weight-set pair analysis based on tracer techniques for dam leakage investigation. Nat Hazards 76(2):747–767

    Google Scholar 

  • Wang T, Chen J, Li P, Yin Y, Shen C (2019) Natural tracing for concentrated leakage detection in a rockfill dam. Eng Geol 249:1–12

    Google Scholar 

  • Wang Z, Yu Y, Wang J, Zhang J, Zhu H, Li P, Xu L, Jiang H, Sui Q, Jia L, Chen J (2022) Convolutional neural-network-based automatic dam-surface seepage defect identification from thermograms collected from UAV-mounted thermal imaging camera. Constr Build Mater 323:126416

    Google Scholar 

  • Weller A, Nordsiek S, Debschütz W (2010) Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization. Geophysics 75(6):E215–E226

    Google Scholar 

  • Wen JC, Chen JL, Yeh TCJ, Wang YL, Huang SY, Tian Z, Yu CY (2020) Redundant and nonredundant information for model calibration or hydraulic tomography. Groundwater 58(1):79–92

    CAS  Google Scholar 

  • Wilkinson PB, Meldrum PI, Kuras O, Chambers JE, Holyoake SJ, Ogilvy RD (2009) High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer. J Appl Geophys 70(4):268–276

    Google Scholar 

  • Wolny F, Marciniak M, Kaczmarek M (2017) A method for the estimation of dual transmissivities from slug tests. Hydrogeol J 26(2):407–416

    Google Scholar 

  • Wrzesinski G, Markiewicz A (2022) Prediction of permeability coefficient k in sandy soils using ANN. Sustainability 14(11):6736

    CAS  Google Scholar 

  • Wu WM (2013) Simplified physically based model of earthen embankment breaching. J Hydraul Eng-ASCE 139(8):837–851

    Google Scholar 

  • Wu CM, Yeh TCJ, Zhu J, Lee TH, Hsu NS, Chen CH, Sancho AF (2005) Traditional analysis of aquifer tests: comparing apples to oranges? Water Resour Res 41(9):W09402

    Google Scholar 

  • Wu W, Altinakar M, Al-Riffai M, Bergman N, Bradford S, Cao Z, Chen Q, Constantinescu S, Duan J, Gee D, Greimann B, Hanson G, He Z, Hegedus P, Hoestenberghe T, Huddleston D, Hughes S, Imran J, Jia Y, Zhang L (2011) Earthen embankment breaching. J Hydraul Eng-ASCE 137(12):1549–1564

    Google Scholar 

  • Xia T, Ma M, Huisman JA, Zheng C, Gao C, Mao D (2023) Monitoring of in-situ chemical oxidation for remediation of diesel-contaminated soil with electrical resistivity tomography. J Contam Hydrol 256:104170

    CAS  Google Scholar 

  • Xiang J, Yeh TCJ, Lee CH, Hsu KC, Wen JC (2009) A simultaneous successive linear estimator and a guide for hydraulic tomography analysis. Water Resour Res 45(2):W02432

    Google Scholar 

  • Xie QY, Liu J, Han B, Li HT, Li YY, Jiang ZQ (2019) Experimental investigation of interfacial erosion on culvert-soil interface in earth dams. Soils Found 59(3):671–686

    Google Scholar 

  • Yeh TCJ, Liu S (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36(8):2095–2105

    Google Scholar 

  • Yi P, Yang J, Wang Y, Mugwanezal VdP, Chen L, Aldahan A (2018) Detecting the leakage source of a reservoir using isotopes. J Environ Radioact 187:106–114

    CAS  Google Scholar 

  • Yilmaz S, Koksoy M (2017) Electrical resistivity imaging and dye tracer test for the estimation of water leakage paths from reservoir of Akdeğirmen Dam in Afyonkarahisar, Turkey. Environ Earth Sci 76(24):829

    Google Scholar 

  • Yilmaz S, Okyar M, Gurbuz M (2021) Electrical resistivity imaging for investigation of seepage paths in the Yukari Gökdere Dam, Isparta, Turkey. Bull Eng Geol Environ 80(1):115–125

    Google Scholar 

  • Yuan D, Zhang Q (2014) Method of calculating permeability coefficient using water pressure test in homogeneous aquifer. J Yangtze River Sci Res Inst 31(8):77–81 (in Chinese)

    Google Scholar 

  • Zha Y, Yeh TCJ, Illman WA, Onoe H, Mok CMW, Wen JC, Huang SY, Wang W (2017) Incorporating geologic information into hydraulic tomography: a general framework based on geostatistical approach. Water Resour Res 53(4):2850–2876

    Google Scholar 

  • Zha Y, Yeh TCJ, Illman WA, Zeng W, Zhang Y, Sun F, Shi L (2018) A reduced-order successive linear estimator for geostatistical inversion and its application in hydraulic tomography. Water Resour Res 54(3):1616–1632

    Google Scholar 

  • Zhang LM, Peng M, Chang DS, Xu Y (2016) Dam failure mechanisms and risk assessment. Wiley, Singapore

    Google Scholar 

  • Zhang ZC, Chen X, Cheng QB, Soulsby C (2019) Storage dynamics, hydrological connectivity and flux ages in a karst catchment: conceptual modelling using stable isotopes. Hydrol Earth Syst Sci 23(1):51–71

    Google Scholar 

  • Zhao Z, Illman WA (2017) On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer-aquitard system. J Hydrol 544:640–657

    Google Scholar 

  • Zhao Z, Illman WA, Berg SJ (2016) On the importance of geological data for hydraulic tomography analysis: laboratory sandbox study. J Hydrol 542:156–171

    Google Scholar 

  • Zhao X, Zhang HB, Wei KY, Wang P, Ren Q, Zhang DL (2021) Flow field fitting method and acoustic Doppler velocity measurement: a new approach for detecting leakage pathways in concrete-face rockfill dams. Earth Space Sci 8(11):e2021EA001875

    Google Scholar 

  • Zhao Z, Luo N, Illman WA (2023) Geostatistical analysis of high-resolution hydraulic conductivity estimates from the hydraulic profiling tool and integration with hydraulic tomography at a highly heterogeneous field site. J Hydrol 617:129060

    Google Scholar 

  • Zheng G, Tong JB, Zhang TQ, Ng CWW (2022) Progression of backward erosion piping with sudden and gradual hydraulic loads. Acta Geotech 17(5):2029–2035

    Google Scholar 

  • Zhong QM, Wang L, Chen SS, Chen ZY, Shan YB, Zhang Q, Ren Q, Mei SY, Jiang JD, Hu L, Liu JX (2021) Breaches of embankment and landslide dams—state of the art review. Earth-Sci Rev 216:103597

    Google Scholar 

  • Zhou R, Su H, Wen Z (2022a) Experimental study on leakage detection of grassed earth dam by passive infrared thermography. NDT&E Int 126:102583

    Google Scholar 

  • Zhou R, Wen Z, Su H (2022b) Automatic recognition of earth rock embankment leakage based on UAV passive infrared thermography and deep learning. ISPRS-J Photogramm Remote Sens 191:85–104

    Google Scholar 

  • Zhu J, Yeh TCJ (2005) Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resour Res 41(7):W07028

    Google Scholar 

  • Zumr D, David V, Jeřábek J, Noreika N, Krása J (2020) Monitoring of the soil moisture regime of an earth-filled dam by means of electrical resistance tomography, close range photogrammetry, and thermal imaging. Environ Earth Sci 79(12):299

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the precious suggestions by anonymous reviewers and editors, which have greatly helped the improvement of the paper. This work was supported by National Natural Science Foundation of China (Grant No. 52279134), and the Program 2022TD-01 for Shaanxi Provincial Innovative Research Team, and the Fund of Jiangxi Provincial Research Center on Hydraulic Structures (Grant No. 2022SKSG04), and the Open Research Fund of Key Laboratory of Reservoir and Dam Safety Ministry of Water Resources (Grant No. YK323001), and the Fundamental research funds for the central nonprofit research institutions (Grant No. HKY-JBYW-2022-01), and the Research Center on Embankment Safety and Disaster Prevention Engineering Technology of Ministry of Water Resources of China (Grant No. LSDP202304).

Author information

Authors and Affiliations

Authors

Contributions

SN contributed to conceptualization, data curation, software, methodology, validation, and writing—review & editing. JR contributed to funding acquisition, resources, software, methodology, supervision, and writing—review & editing. LZ and HL contributed to review, and editing. ZM, JK and HG contributed to data curation and writing.

Corresponding author

Correspondence to Jie Ren.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, S., Ren, J., Zhang, L. et al. Geotechnical, Geoelectric and Tracing Methods for Earth/Rock-Fill Dam and Embankment Leakage Investigation. Surv Geophys 45, 525–576 (2024). https://doi.org/10.1007/s10712-023-09806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-023-09806-8

Keywords

Navigation