Skip to main content

Advertisement

Log in

The European Upper Mantle as Seen by Surface Waves

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We derive a global, three-dimensional tomographic model of horizontally and vertically polarized shear velocities in the upper mantle. The model is based on a recently updated global database of Love- and Rayleigh-wave fundamental-mode phase-anomaly observations, with a good global coverage and a particularly dense coverage over Europe and the Mediterranean basin (broadband stations from the Swiss and German seismic networks). The model parameterization is accordingly finer within this region than over the rest of the globe. The large-scale, global structure of our model is very well correlated with that of earlier shear-velocity tomography models, based both on body- and surface-wave observations. At the regional scale, within the region of interest, correlation is complicated by the different resolution limits associated to different databases (surface waves, compressional waves, shear waves), and, accordingly, to different models; while a certain agreement appears to exist for what concerns the grand tectonic features in the area, heterogeneities of smaller scale are less robustly determined. Our new model is only one step towards the identification of a consensus model of European/Mediterranean upper-mantle structure: on the basis of the findings discussed here, we expect that important improvements will soon result from the combination, in new tomographic inversions, of fundamental-mode phase-anomaly data like ours with observations of surface-wave overtones, of body-wave travel times, of ambient “noise”, and by accounting for an a-priori model of crustal structure more highly resolved than the one employed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Amaru ML, Spakman W, Villaseñor A, Sandoval S, Kissling E (2008) A new absolute arrival time data set for Europe. Geophys J Int 173:465–472. doi:10.1111/j.1365-246X.2008.03704.x

    Article  Google Scholar 

  • Artemieva IM (2006) Global 1° × 1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416:245–277. doi:10.1016/j.tecto.2005.11.022

    Article  Google Scholar 

  • Artemieva IM, Mooney WD (2001) Thermal structure and evolution of Precambrian lithosphere: a global study. J Geophys Res 106:16,387–16,414

    Google Scholar 

  • Babuska V, Cara M (1991) Seismic anisotropy in the earth. Kluwer Academic Press, Boston

    Google Scholar 

  • Baer M, Zweifel P, Giardini D (2000) The Swiss digital seismic network (SD-197 SNet). Orfeus Newsl 2 (2):1–5

    Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans Am Geophys Union 81:F897

    Google Scholar 

  • Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. Geochem Geophys Geosyst 3:2001GC000168

    Article  Google Scholar 

  • Bijwaard H, Spakman W, Engdahl ER (1998) Closing the gap between regional and global travel-time tomography. J Geophys Res 103:30,055–30,078

    Article  Google Scholar 

  • Boschi L (2003) Measures of resolution in global body-wave tomography. Geophys Res Lett 30:2003GL018222

    Article  Google Scholar 

  • Boschi L (2006) Global multi-resolution models of surface wave propagation: comparing equivalently-regularized Born- and Ray-theoretical solutions. Geophys J Int 167:238–252. doi:10.1111/j.1365-246X.2006.03084.x

    Article  Google Scholar 

  • Boschi L, Dziewoński AM (1999) “High” and “low” resolution images of the Earth’s mantle: implications of different approaches to tomographic modeling. J Geophys Res 104:25,567–25,594

    Article  Google Scholar 

  • Boschi L, Ekström G (2002) New images of the Earth’s upper mantle from measurements of surface-wave phase velocity anomalies. J Geophys Res 107:2059. doi:10.129/2000JB000059

    Article  Google Scholar 

  • Boschi L, Ekström G, Kustowski B (2004) Multiple resolution surface wave tomography: the Mediterranean basin. Geophys J Int 157:293–304. doi:10.1111/j.1365-246X.2004.02194.x

    Article  Google Scholar 

  • Capitanio FA, Goes S (2006) Mesozoic spreading kinematics: consequences for Cenozoic Central and Western Mediterranean subduction. Geophys J Int 165:804–816. doi:10.1111/j.1365-246X.2006.02892.x

    Article  Google Scholar 

  • Dahlen FA, Hung S-H, Nolet G (2000). Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophys J Int 141:157–174

    Article  Google Scholar 

  • de Jonge MR, Wortel MJR, Spakman W (1994) Regional scale tectonic evolution and the seismic velocity structure of the lithosphere and upper mantle: the Mediterranean region. J Geophys Res 99:12,091–12,108

    Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou L-E, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet J-C, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315

    Article  Google Scholar 

  • Dziewoński AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356

    Article  Google Scholar 

  • Ekström G, Dziewoński AM (1998) The unique anisotropy of the Pacific upper mantle. Nature 394:168–172

    Article  Google Scholar 

  • Ekström G, Tromp J, Larson EWF (1997) Measurements and global models of surface wave propagation. J Geophys Res 102:8137–8157

    Article  Google Scholar 

  • Faccenna C, Jolivet L, Piromallo C, Morelli A (2003) Subduction and the depth of convection in the Mediterranean mantle. J Geophys Res 108:2099. doi:10.1029/2001JB001690

    Article  Google Scholar 

  • Fan G, Wallace TC, Zhao D (1998) Tomographic imaging of deep velocity structure beneath the Eastern and Southern Carpathians, Romania: implications for continental collision. J Geophys Res 103:2705–2723

    Article  Google Scholar 

  • Fry B (2007) Surface wave tomography of the Mediterranean and central Europe: a new shear wave velocity model. Ph.D. Thesis, ETH Zürich, Switzerland

  • Fry B, Boschi L, Ekström G, Giardini D (2008) Europe-Mediterranean tomography: high correlation between new seismic data and independent geophysical observables. Geophys Res Lett 35:L04301. doi:10.1029/2007GL031519

    Article  Google Scholar 

  • Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34:561–580

    Article  Google Scholar 

  • Henger M, Berckhemer H, Seidl D (2002) The history of the development of the German Regional Seismic Network. In Korn M (ed) Ten years of German Regional Seismic Network (GRSN). Report 25 of the Senate Commission for Geoscience (DFG), Wiley-VCH, Weinheim, Germany, pp 1–8

  • Kirby JF, Swain CJ (2008) An accuracy assessment of the fan wavelet method for elastic thickness estimation. Geochem Geophys Geosyst 9:Q03022. doi:10.1029/2007GC001773

    Article  Google Scholar 

  • Kustowski B, Ekström G, Dziewoński AM (2008a) The shear-wave velocity structure in the upper mantle beneath Eurasia. Geophys J Int 174:978–992. doi:10.1111/j.1365-246X.2008.03865.x

    Article  Google Scholar 

  • Kustowski B, Ekström G, Dziewoński AM (2008b) Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J Geophys Res 113:B06306. doi:10.1029/2007JB005169

    Article  Google Scholar 

  • Lebedev S, van der Hilst RD (2008) Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys J Int 173:505–518. doi:10.1111/j.1365-246X.2008.03721.x

    Article  Google Scholar 

  • Li X-D, Romanowicz B (1996) Global mantle shear-velocity model developed using nonlinear asymptotic coupling theory. J Geophys Res 101:22,245–22,272

    Google Scholar 

  • Lippitsch R, Kissling E, Ansorge J (2003) Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J Geophys Res 108:2376. doi:10.1029/2002JB002016

    Article  Google Scholar 

  • Marchant RH, Stampfli GM (1997) Subduction of continental crust in the Western Alps. Tectonophysics 269:217–235. doi:10.1016/S0040-1951(96)00170-9)

    Article  Google Scholar 

  • Marone F, van der Lee S, Giardini D (2004) Three-dimensional upper-mantle S velocity model for the Eurasia-Africa plate boundary region. Geophys J Int 158:109–130

    Article  Google Scholar 

  • Mooney WD, Laske G, Masters G (1998) CRUST-5.1: a global crustal model at 5° × 5°. J Geophys Res 103:727–747

    Article  Google Scholar 

  • Pérez-Gussinyé M, Watts AB (2005) The long-term strength of Europe and its implications for plate forming processes. Nature 381–384. doi:10.1038/nature03854

  • Pérez-Gussinyé M, Swain CJ, Kirby JF, Lowry T (2009) Spatial variations of the effective elastic thickness, T e , using multitaper spectral estimation and wavelet methods: examples from synthetic data and application to South America. Geochem Geophys Geosyst (submitted)

  • Peter D, Boschi L, Deschamps F, Fry B, Ekström G, Giardini D (2008) Surface-wave tomography: finite-frequency shear-velocity inversions for the European-Mediterranean region. Geophys Res Lett 35:L16315. doi:10.1029/2008GL034769

    Article  Google Scholar 

  • Peter D, Boschi L, Woodhouse JH (2009) Tomographic resolution of ray and finite-frequency theories: a membrane-wave investigation. Geophys J Int (in press)

  • Pilidou S, Priestley K, Debayle E, Gudmundsson Ó (2005) Rayleigh wave tomography in the North Atlantic: high resolution images of the Iceland, Azores and Eifel mantle plumes. Lithos 79:453–474. doi:10.1016/j.lithos.2004.09.012

    Article  Google Scholar 

  • Piromallo C, Morelli A (2003). P-wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res 108. doi:10.1029/2002JB001757

  • Ritsema J, van Heijst HJ, Woodhouse JH (2004) Global transition zone tomography. J Geophys Res 109. doi:10.1029/2003JB002610

  • Schivardi R, Morelli A (2009) Surface wave tomography in the European and Mediterranean region. Geophys J Int (in press)

  • Schmid C, van der Lee S, VanDecar JC, Engdahl ER, Giardini D (2008) Three-dimensional S velocity of the mantle in the Africa-Eurasia plate boundary region from phase arrival times and regional waveforms. J Geophys Res 113:B03306. doi:10.1029/2005JB004193

    Article  Google Scholar 

  • Simmons NA, Forte AM, Grand SP (2006) Constraining mantle flow with seismic and geodynamic data: a joint approach. Earth Planet Sci Lett 246:109–124

    Article  Google Scholar 

  • Spetzler J, Trampert J, Snieder R (2001) Are we exceeding the limits of the great circle approximation in surface wave tomography? Geophys Res Lett 28:2341–2344

    Article  Google Scholar 

  • Stehly L, Fry B, Campillo M, Shapiro N, Guilbert J, Boschi L, Giardini D (2009) Tomography of the Alpine region from observations of seismic ambient noise. Geophys J Int (in press)

  • Tesauro M, Kaban MK, Cloetingh SAPL (2008) EuCRUST-07: a new reference model for the European crust. Geophys Res Lett 35:L05313. doi:10.1029/2007GL032244

    Article  Google Scholar 

  • Trefethen LN, Bau D III (1997) Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Tromp J, Dahlen FA (1992) Variational principles for surface wave propagation on a laterally heterogeneous Earth—II. Frequency-domain JWKB theory. Geophys J Int 109:599–619

    Article  Google Scholar 

  • van der Lee S, Marone F, van der Meijde M, Giardini D, Deschamps A, Margheriti L, Burkett P, Solomon SC, Alves PM, Chouliaras M, Eshwehdi A, Suleiman A, Gashut H, Herak M, Ortiz R, Martin Davila J, Ugalde A, Vila J, Yelles K (2001) Eurasia-Africa plate boundary region yields new seismographic data. Eos Trans AGU 82(Fall Meet Suppl):637

  • Wang Z, Dahlen FA (1995) Global and regional structures inferred from surface waves. Geophys Res Lett 22:3099–3102

    Article  Google Scholar 

  • Weidle C, Maupin V (2008) An upper-mantle S-wave velocity model for Northern Europe from Love and Rayleigh group velocities. Geophys J Int 175:1154–1168. doi:10.1111/j.1365-246X.2008.03957.x

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72:445–446

    Article  Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290:1910–1917. doi:10.1126/science.290.5498.1910

    Article  Google Scholar 

  • Zhou Y, Nolet G, Dahlen FA, Laske G (2006) Global upper-mantle structure from finite-frequency surface-wave tomography. J Geophys Res 111:B04304. doi:10.1029/2005JB003677

    Article  Google Scholar 

Download references

Acknowledgments

This article was written after an invitation by Yu Jeff Gu, to whom we are grateful. We thank Stefan Heimers for porting our Unix code to Linux, and Marta Pérez-Gussinyé for many clarifying discussions on the strength and thickness of the European lithosphere. We thank the authors of all tomographic and geophysical models that we show and discuss. All figures except for Fig. 3 were generated with the Generic Mapping Tools software (Wessel and Smith 1991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lapo Boschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boschi, L., Fry, B., Ekström, G. et al. The European Upper Mantle as Seen by Surface Waves. Surv Geophys 30, 463–501 (2009). https://doi.org/10.1007/s10712-009-9066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-009-9066-2

Keywords

Navigation