Skip to main content
Log in

Fuchsian DPW potentials for Lawson surfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The Lawson surface \(\xi _{1,g}\) of genus g is constructed by rotating and reflecting the Plateau solution \(f_t\) with respect to a particular geodesic 4-gon \(\Gamma _t\) across its boundary, where \((t= \tfrac{1}{2g+2},\tfrac{\pi }{2},t,\tfrac{\pi }{2})\) are the angles of \(\Gamma _t\). Recent progress in integrable surface theory allows for a more explicit construction of these surfaces and for better understanding of their geometric properties using so-called Fuchsian DPW potentials for \(t \sim 0\). In this paper we combine the existence and regularity of the Plateau solution \(f_t\) in \(t \in (0, \tfrac{1}{4})\) with a detailed investigation of the moduli space of Fuchsian systems on the 4-punctured sphere to obtain the existence of a Fuchsian DPW potential \(\eta _t\) for every \(f_t\) with \(t\in (0, \tfrac{1}{4}]\). Moreover, the coefficients of \(\eta _t\) are shown to depend real analytically on t. This implies that the Taylor expansions of the DPW potential \(\eta _t\) and of the area in Heller et al. (Complete families of embedded high genus CMC surfaces in the 3-sphere. arXiv:2108.10214) computed at \(t=0\) already determine these quantities for all \(\xi _{1,g}\). In particular, this leads to an algorithm to conformally parametrize all Lawson surfaces \(\xi _{1,g}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The manuscript has no associated data.

Notes

  1. CMC surfaces in \(\mathbb R^3\) and minimal surfaces in \(\mathbb S^3\) are related by the Lawson correspondence, and have the same associated family of flat connections. Therefore, all results about normalized potentials also apply for minimal surfaces in \(\mathbb R^3.\)

  2. In fact, it is the strictly parabolic structure for which the parabolic lines at the opposite points \(p_1\) and \(p_3\) respectively \(p_2\) and \(p_4\) coincide.

References

  1. Alekseev, A., Malkin, A.: Symplectic structure of the Moduli space of flat connections on a Riemann surface. Commun. Math. Phys. 169, 99–119 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audin, M.: Lectures on gauge theory and integrable systems. In: Hurtubise, J., Lalonde, F., Sabidussi, G. (eds.) Gauge Theory and Symplectic Geometry. NATO ASI Series, vol. 488. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-017-1667-3-1

    Chapter  Google Scholar 

  4. Biquard, O.: Fibrés paraboliques stables et connexions singulières plates. Bull. Soc. Math. Fr. 119, 231–257 (1991)

    Article  MATH  Google Scholar 

  5. Biswas, I.: Parabolic bundles as orbifold bundles. Duke Math. J. 88(2), 305–326 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobenko, A.I.: All constant mean curvature tori in \({{\mathbb{R} }}^3\), \({{\mathbb{S} }}^3\),\(H^3\) in terms of theta-functions. Math. Ann. 290(2), 209–245 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bobenko, A.I., Heller, S., Schmitt, N.: Constant mean curvature surfaces based on fundamental quadrilaterals. Math. Phys. Anal. Geom. 24, 37 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, vol. 223. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  9. Deligne, P.: Equations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, vol. 163. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  10. Dorfmeister, J., Haak, G.: Meromorphic potentials and smooth surfaces of constant mean curvature. Math. Z. 224(4), 603–640 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dorfmeister, J., Pedit, F., Wu, H.: Weierstrass type representation of harmonic maps into symmetric spaces. Commun. Anal. Geom. 6(4), 633–668 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heller, L., Heller, S.: Abelianisation of Fuchsian systems and applications. J. Symplectic Geom. 14(4), 1059–1088 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heller, L., Heller, S., Schmitt, N.: Navigating the space of symmetric CMC surfaces. J. Differ. Geom. 110(3), 413–455 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heller, L., Heller, S., Traizet, M.: Area estimates for high genus Lawson surfaces. J. Differ. Geom. (to appear). arxiv:1907.07139

  15. Heller, L., Heller, S., Traizet, M.: Complete families of embedded high genus CMC surfaces in the \(3\)-sphere. arXiv:2108.10214

  16. Heller, S.: Lawson’s genus two minimal surface and meromorphic connections. Math. Z. 274, 745–760 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heller, S.: A spectral curve approach to Lawson symmetric CMC surfaces of genus 2. Math. Annalen 360(3), 607–652 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hitchin, N.: Harmonic maps from a 2-torus to the 3-sphere. J. Differ. Geom. 31(3), 627–710 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kapouleas, N.: Minimal surfaces in the round three-sphere by doubling the equatorial two-sphere. I. J. Differ. Geom. 106(3), 393–449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kapouleas, N., Yang, S.D.: Minimal surfaces in the three-sphere by doubling the Clifford torus. Am. J. Math. 132(2), 257–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kapouleas, N., Wiygul, D.: The index and nullity of the Lawson surfaces \(\xi _{g,1}\). Camb. J. Math. 8(2), 363–405 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karcher, H., Pinkall, U., Sterling, I.: New minimal surfaces in \(\mathbb{S} ^3\). J. Differ. Geom. 28(2), 169–185 (1988)

    Article  MATH  Google Scholar 

  23. Kim, S., Wilkin, G.: Analytic convergence of harmonic metrics for parabolic Higgs bundles. J. Geom. Phys. 127, 55–67 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kusner, R.: Comparison surfaces for the Willmore problem. Pac. J. Math. 138(2), 317–345 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuwert, E., Li, Y., Schätzle, R.: The large genus limit of the infimum of the Willmore energy. Am. J. Math. 132(1), 37–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lawson, H.B.: Complete minimal surfaces in \(S^{3}\). Ann. Math. (2) 92, 335–374 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Loray, F., Saito, M.-H.: Lagrangian fibrations in duality on Moduli spaces of rank 2 logarithmic connections over the projective line. IMRN 2015(4), 995–1043 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Marques, F.C., Neves, A.: Morse index of multiplicity one min-max minimal hypersurfaces. Adv. Math. 378, Paper No. 107527 (2021)

  29. Mehta, V.B., Seshadri, C.S.: Moduli of vector bundles on curves with parabolic structures. Math. Ann. 248, 205–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meneses, C.: Remarks on groups of bundle automorphisms over the Riemann sphere. Geom. Dedicata 196(1), 63–90 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pinkall, U., Sterling, I.: On the classification of constant mean curvature tori. Ann. Math. (2) 130(2), 407–451 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pirola, G.: Monodromy of constant mean curvature surface in hyperbolic space. Asian J. Math. 11(4), 651–669 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pressley, A., Segal, G.: Loop Groups. Oxford Mathematical Monographs. The Clarendon Press, New York (1986)

    MATH  Google Scholar 

  34. Simpson, C.: Harmonic bundles on noncompact curves. J. Am. Math. Soc. 3(3), 713–770 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Reiner Schätzle for providing the ideas to prove Theorem 1. Moreover, we thank Martin Traizet for various fruitful discussions. We would like to thank the anonymous referees for their time, thorough comments and excellent advice. The authors have been supported by the Deutsche Forschungsgemeinschaft within the priority program Geometry at Infinity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Heller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heller, L., Heller, S. Fuchsian DPW potentials for Lawson surfaces. Geom Dedicata 217, 101 (2023). https://doi.org/10.1007/s10711-023-00840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00840-9

Keywords

Mathematics Subject Classification

Navigation