Skip to main content
Log in

The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D)

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Consider the class QSH of all non-degenerate planar quadratic differential systems possessing an invariant algebraic hyperbola. In this paper we consider a specific two-parametric family of systems in QSH possessing three pairs of infinite singularities, namely family QSH(D). For this family we have generically a presence of one couple of parallel invariant straight lines and one invariant algebraic hyperbola. Our goal is to explore the relationship among the topological bifurcation diagram, geometry of configurations of invariant algebraic curves and its type of integrability. For this study we construct the topological bifurcation diagram of configurations and phase portraits of the family QSH(D) altogether. We also study the integrability, we obtain all the distinct configurations of invariant algebraic curves, and we get all the topologically distinct phase portraits in the Poincaré disc. More precisely, we prove that the family under consideration is Liouvillian integrable, there are 53 distinct configurations of invariant algebraic curves, and there exist 18 topologically distinct phase portraits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

There is no data or additional material available.

References

  1. Artés, J.C., Llibre, J., Schlomiuk, D.: The geometry of quadratic differential systems with a weak focus of second order. Int. J. Bifur. Chaos Appl. Sci. Eng. 16, 3127–3194 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Geometric Configurations of Singularities of Planar Polynomial Differential Systems-A Global Classification in the Quadratic Case. Birkhäuser, Cham (2021)

    Book  MATH  Google Scholar 

  3. Artés, J.C., Mota, M.C., Rezende, A.C.: Quadratic differential systems with a finite saddle-node and an infinite saddle-node \((1,1)SN\) - (A). Int. J. Bifur. Chaos Appl. Sci. Eng. 31, 1–24 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Artés, J.C., Mota, M.C., Rezende, A.C.: Quadratic differential systems with a finite saddle-node and an infinite saddle-node \((1,1)SN\) - (B). Int. J. Bifur. Chaos Appl. Sci. Eng. 31, 1–110 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Artés, J.C., Rezende, A.C., Oliveira, R.D.S.: Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node. Int. J. Bifur. Chaos Appl. Sci. Eng. 23, 1–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Artés, J.C., Rezende, A.C., Oliveira, R.D.S.: The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node \((A, B)\). Int. J. Bifur. Chaos Appl. Sci. Eng. 24, 1–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Artés, J.C., Rezende, A.C., Oliveira, R.D.S.: The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node \(C\). Int. J. Bifur. Chaos Appl. Sci. Eng. 25, 1–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bautin, N.N.: On periodic solutions of a system of differential equations. Prikl. Mat. Meh. 18, 1–128 (1954)

    Google Scholar 

  9. Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: Darboux integrability and the inverse integrating factor. J. Differ. Equ. 194, 116–139 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christopher, C. (1989). Quadratic systems having a parabola as an integral curve. Proc. R. Soc. Edinb. Sect. A Math 112(1-2), 113–134

  11. Christopher, C.J.: Invariant algebraic curves and conditions for a centre. Proc. R. Soc. Edinb. Sect. A Math. 124, 1209–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christopher, C., Kooij, R.E.: Algebraic invariant curves and the integrability of polynomial systems. Appl. Math. Lett. 6(4), 51–53 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christopher, C., Llibre, J.: Integrability via invariant algebraic curves for planar polynomial differential systems. Ann. Differ. Equ. 14, 5–19 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Christopher, C., Llibre, J., Pantazi, C., Walcher, S.: On planar polynomial vector fields with elementary first integrals. J. Differ. Equ. 267, 4572–4588 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Christopher, C., Llibre, J., Pereira, J.V.: Multiplicity of invariant algebraic curves in polynomial vector fields. Pacific J. Math. 229(1), 63–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges). Bull. Sci. Math. 60–96(123–144), 151–200 (1878)

    MATH  Google Scholar 

  17. Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. World Scientific Publishing Co. Pte. Ltd., Singapore (2001)

    Book  MATH  Google Scholar 

  18. Jouanolou, J.P.: Equations de Pfaff algebriques. Lectures Notes in Mathematics 708, Springer, New York (1979)

  19. Llibre, J., Zhang, X.: Darboux theory of integrability in \({\mathbb{R} }^n\) taking into account the multiplicity at infinity. J. Differ. Equ. 133, 765–778 (2009)

    MATH  Google Scholar 

  20. Oliveira, R.D.S., Rezende, A.C., Schlomiuk, D., Vulpe, N.: Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. Electron. J. Differ. Equ. 295, 1–112 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Oliveira, R.D.S., Rezende, A.C., Vulpe, N.: Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space \(\mathbb{R}^{12}\). Electron. J. Differ. Equ. 162, 1–50 (2016)

    Google Scholar 

  22. Oliveira, R.D.S., Schlomiuk, D., Travaglini, A.M.: Geometry and integrability of quadratic systems with invariant hyperbolas. Electron. J. Qual. Theory Differ. Equ. 6, 1–56 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Oliveira, R.D.S., Schlomiuk, D., Travaglini, A.M., Valls, C.: Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electron J. Qual. Theory Differ Equ. 45, 1–90 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Pereira, J.V.: Vector fields, invariant varieties and linear systems. Ann. Inst. Fourier (Grenoble) 51, 1385–1405 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Prelle, M.J., Singer, M.F.: Elementary first integrals of differential equations. Trans. Am. Math. Soc. 279, 215–229 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schlomiuk, D., Vulpe, N.: Planar quadratic vector fields with invariant lines of total multiplicity at least five. Qual. Theory Dyn. Syst. 5, 135–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic systems with invariant lines of at least five total multiplicity. Rocky Mountain J. Math. 38(6), 2015–2075 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic systems with invariant lines of total multiplicity four. Bul. Acad. Stiin. Repub. Mold. Mat. 56, 27–83 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Schlomiuk, D., Vulpe, N.: The full study of planar quadratic differential systems possessing a line of singularities at infinity. J. Dyn. Differ. Equ. 20, 737–775 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schlomiuk, D., Vulpe, N.: Planar quadratic differential systems with invariant straight lines of the total multiplicity four. Nonlinear Anal. Theory Methods Appl. 68, 681–715 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Singer, M.F.: Liouvillian first integrals of differential equations. Trans. Am. Math. Soc. 333, 673–688 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Travaglini, A.M.: Integrability and geometry of quadratic differential systems with invariant hyperbolas. Tese de Doutorado do Programa de Pós-Graduação em Matemática (PPG-Mat), Universidade de São Paulo, pp. 1–398 (2021)

  33. Zhang, X.: Integrability of Dynamical Systems: Algebra and Analysis. Developments in Mathematics. Springer Nature, Singapore (2017)

Download references

Acknowledgements

The first author is partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grant Number 166449/2020-2. The second author is partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Grant “Projeto Temático” 2019/21181-0 and CNPq Grant Number 304766/2019-4. This paper was developed during the Postdoctoral Program of the first and third authors at ICMC-USP.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in all stages of the manuscript elaboration, including on the revision.

Corresponding author

Correspondence to Marcos C. Mota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

The authors agree with the publication of the manuscript in all publications of the Publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, M.C., Oliveira, R. & Travaglini, A.M. The interplay among the topological bifurcation diagram, integrability and geometry for the family QSH(D). Geom Dedicata 217, 95 (2023). https://doi.org/10.1007/s10711-023-00827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00827-6

Keywords

Mathematics Subject Classification (2020)

Navigation