Skip to main content
Log in

Toy Teichmüller spaces of real dimension 2: the pentagon and the punctured triangle

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study two 2-dimensional Teichmüller spaces of surfaces with boundary and marked points, namely, the pentagon and the punctured triangle. We show that their geometry is quite different from Teichmüller spaces of closed surfaces. Indeed, both spaces are exhausted by regular convex geodesic polygons with a fixed number of sides, and their geodesics diverge at most linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Masur only considers closed surfaces in [17], but the proof extends essentially verbatim to surfaces with boundary. Alternatively, one can apply Masur’s theorem to the doubles of the surfaces in question. As we noted in Theorem 5, distance is preserved by doubling.

  2. A set is totally geodesic if it contains the bi-infinite geodesic through any two of its points.

References

  1. Ahlfors, L.V.: On quasiconformal mappings. J. Anal. Math. 3(1), 1–58 (1953)

    Article  MathSciNet  Google Scholar 

  2. Ahlfors, L.V.: Lectures on Quasiconformal Mappings. University lecture series, American Mathematical Society (2006)

    Book  Google Scholar 

  3. Ahlfors, L.V.: Conformal Invariants. AMS Chelsea Publishing, Providence, RI, Topics in geometric function theory, Reprint of the 1973 original, With a foreword by Peter Duren, F. W. Gehring and Brad Osgood (2010)

  4. Alessandrini, D., Liu, L., Papadopoulos, A., Su, W.: The horofunction compactification of Teichmüller spaces of surfaces with boundary. Topol. Appl. 208, 160–191 (2016)

    Article  Google Scholar 

  5. Amano, M.: The asymptotic behavior of Jenkins–Strebel rays. Conform. Geom. Dyn. 18(9), 157–170 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bers, L.: Quasiconformal Mappings and Teichmüller’s Theorem. Courant Institute of Mathematical Sciences, New York University, New York (1958)

    MATH  Google Scholar 

  7. Bowditch, B.H.: Large-scale rank and rigidity of the Teichmüller metric. J. Topol. 9(4), 985 (2016)

    Article  MathSciNet  Google Scholar 

  8. Duchin, M., Rafi, K.: Divergence of geodesics in Teichmüller space and the mapping class group. GAFA 19(3), 722–742 (2009)

    MATH  Google Scholar 

  9. Devadoss, S.L., Heath, T., Vipismakul, W.: Deformations of bordered surfaces and convex polytopes. Notices Amer. Math. Soc. 58(4), 530–541 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Fathi, A., Laudenbach, F., Poénaru, V.: Thurston’s Work on Surfaces. Mathematical Notes 48. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  11. Bourque, M. Fortier, Rafi, K.: Non-convex balls in the Teichmüller metric. Preprint arXiv:1606.05170 (2016)

  12. Hubbard, J., Masur, H.: Quadratic differentials and foliations. Acta Math. 142, 221–274 (1979)

    Article  MathSciNet  Google Scholar 

  13. Hubbard, J.H.: Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, vol. 1. Matrix Editions, Ithaca (2006)

    MATH  Google Scholar 

  14. Kahn, J., Pilgrim, K.M., Thurston, D.P.: Conformal surface embeddings and extremal length. Preprint arXiv:1507.05294 (2015)

  15. Kerckhoff, S.P.: The asymptotic geometry of Teichmüller space. Topology 19, 23–41 (1980)

    Article  MathSciNet  Google Scholar 

  16. Leininger, C.J., Schleimer, S.: Hyperbolic spaces in Teichmüller spaces. J. Eur. Math. Soc. 16(12), 2669–2692 (2014)

    Article  MathSciNet  Google Scholar 

  17. Masur, H.: On a class of geodesics in Teichmüller space. Ann. of Math. (2) 102(2), 205–221 (1975)

    Article  MathSciNet  Google Scholar 

  18. Masur, H.: Two boundaries of Teichmüller space. Duke Math. J. 49(1), 183–190, 03 (1982)

    Article  MathSciNet  Google Scholar 

  19. Masur, H.: Geometry of Teichmüller space with the Teichmüller metric. In: Surveys in differential geometry, vol. 14. Geometry of Riemann surfaces and their moduli spaces, volume 14 of Surv. Differ. Geom., pp. 295–313. Int. Press, Somerville (2009)

  20. McMullen, C.T., Mukamel, R.E., Wright, A.: Cubic curves and totally geodesic subvarieties of moduli space. Ann. of Math. 185(3), 957–990 (2017)

    Article  MathSciNet  Google Scholar 

  21. Minsky, Y.N.: Teichmüller geodesics and ends of hyperbolic 3-manifolds. Topology 32, 625–647 (1993)

    Article  MathSciNet  Google Scholar 

  22. Strebel, K.: Quadratic Differentials. Springer, Berlin (1984)

    Book  Google Scholar 

  23. Teichmüller, O.: Extremal quasiconformal mappings and quadratic differentials. In: Papadopoulos, A. (ed.) Handbook of Teichmüller theory, vol. 5, pp. 321–483. European Mathematical Society, Sorbonne (2016)

  24. Teichmüller, O.: Complete solution of an extremal problem of the quasiconformal mapping. In: Papadopoulos, A. (ed.) Handbook of Teichmüller theory, vol. 6, pp. 547–560. European Mathematical Society, Sorbonne (2016)

    MATH  Google Scholar 

  25. Troyanov, M.: Prescribing curvature on compact surfaces with conical singularities. Trans. Am. Math. Soc. 324, 793–821 (1991)

    Article  MathSciNet  Google Scholar 

  26. Wright, A.: Totally geodesic submanifolds of Teichmüller space. Preprint arXiv:1702.03249 (2017)

Download references

Acknowledgements

This research was conducted during the 2016 Fields Undergraduate Summer Research Program. The authors thank the Fields Institute for providing this opportunity. MFB was partially supported by a postdoctoral research scholarship from the Fonds de recherche du Québec – Nature et technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Fortier Bourque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chernov, R., Flores, M. et al. Toy Teichmüller spaces of real dimension 2: the pentagon and the punctured triangle. Geom Dedicata 197, 193–227 (2018). https://doi.org/10.1007/s10711-018-0325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0325-6

Keywords

Mathematics Subject Classification (2000)

Navigation