Skip to main content
Log in

Representations of fundamental groups of 3-manifolds into \(\mathrm{PGL}(3,\mathbb {C})\): exact computations in low complexity

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we are interested in computing representations of the fundamental group of SL 3-manifold into \(\mathrm{PGL}(3,\mathbb {C})\) (in particular in \(\mathrm{PGL}(2,\mathbb {C}), \mathrm{PGL}(3,\mathbb {R})\) and \(\mathrm{PU}(2,1)\)). The representations are obtained by gluing decorated tetrahedra of flags as in Falbel (J Differ Geom 79:69–110, 2008), Bergeron et al. (Tetrahedra of flags, volume and homology of SL(3), 2011). We list complete computations (giving 0-dimensional or 1-dimensional solution sets (for unipotent boundary holonomy) for the first complete hyperbolic non-compact manifolds with finite volume which are obtained gluing less than three tetrahedra with a description of the computer methods used to find them. The methods we use work for non-unipotent boundary holonomy as shown in some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comput. 28(1), 105–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergeron, N., Falbel, E., Guilloux, A.: Tetrahedra of flags, volume and homology of SL(3). arXiv:1101.2742, (2011) To appear in Geom. Top

  3. Bergeron, N., Falbel, E., Guilloux, A., Koseleff, P.V., Rouillier, F.: Local rigidity for sl(3, c) representations of 3-manifold groups. Exp. Math. 22(4), 410–420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouzidi, Y., Lazard, S., Pouget, M., Rouillier, F.: Rational univariate representations of bivariate systems and applications. In: ISSAC, pp. 109–116 (2013)

  5. Bucher-Karlsson, M., Burger, M., Iozzi, A.: In preparation (2013)

  6. Cano, A., Navarrete, J.P., Seade, J.: Complex Kleinian Groups. Progress in Mathematics 303. Birkhäuser/Springer Basel AG, Basel (2013)

  7. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Undergraduate Texts in Mathematics. Springer, New York (1997)

  8. Deraux, M., Falbel, E.: Complex hyperbolic geometry of the complement of the figure eight knot. arXiv:1303.7096v1, (2013). To appear in Geom. Top

  9. Falbel, E.: A spherical CR structure on the complement of the figure eight knot with discrete holonomy. J. Differ. Geom. 79, 69–110 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Falbel, E.: A volume function for CR tetrahedra. Q. J. Math. 62(2), 397–415, (2011) preprint http://arxiv.org/abs/0907.2305

  11. Falbel, E., Wang, J.: Branched spherical CR structures on the complement of the figure eight knot. preprint. To appear in Mich. J. Math. (2013)

  12. Falbel, E., Wang, Q.: A combinatorial invariant for spherical cr structures. Asian J. Math. 17(3), 391–422 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algeb. 139(1–3), 61–88 (1999)

    Article  MATH  Google Scholar 

  14. Garoufalidis, S., Goerner, M., Zickert, C.K.: Gluing equations for PGL(n,C)-representations of 3- manifoldsc)-representations of 3-manifolds. arXiv:1207.6711, (2012)

  15. Garoufalidis, S., Thurston, D.P., Zickert, C.K.: The complex volume of SL(n,C)-representations of 3-manifolds. arXiv:1111.2828 (2011)

  16. Goerner, M.L: http://www.unhyperbolic.org/ptolemy.html

  17. Guilloux, A.: Deformation of hyperbolic manifolds in PGL(n,C) and discreteness of the peripheral representations. preprint (2013)

  18. Hashemi, A., Lazard, D.: Sharper complexity bounds for zero-dimensional gröbner bases and polynomial system solving. Int. J. Algebr. Comput. 21(703), (2011)

  19. Parker, J., Will, P.: In preparation (2013)

  20. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. J. Appl. Algebra Eng. Commun. Comput. 9(5), 433–461 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schwartz, R.E.: Degenerating the complex hyperbolic ideal triangle groups. Acta Math. 186, 105–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schwartz, R.E.: Real hyperbolic on the outside, complex hyperbolic on the inside. Invent. Math. 151(2), 221–295 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thurston, W.: The geometry and topology of 3-manifolds. Lecture Notes (1979)

  24. Weeks, J.: Computation of hyperbolic structures in knot theory. In: Elsevier B.V. (ed.) Handbook of Knot Theory, pp. 461–480 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Falbel.

Additional information

This work was supported in part by the ANR through the project “Structures Géométriques et Triangulations”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falbel, E., Koseleff, PV. & Rouillier, F. Representations of fundamental groups of 3-manifolds into \(\mathrm{PGL}(3,\mathbb {C})\): exact computations in low complexity. Geom Dedicata 177, 229–255 (2015). https://doi.org/10.1007/s10711-014-9987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-014-9987-x

Keywords

Mathematics Subject Classification

Navigation