Skip to main content
Log in

Rigid geometric structures, isometric actions, and algebraic quotients

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

By using a Borel density theorem for algebraic quotients, we prove a theorem concerning isometric actions of a Lie group G on a smooth or analytic manifold M with a rigid A-structure σ. It generalizes Gromov’s centralizer and representation theorems to the case where R(G) is split solvable and G/R(G) has no compact factors, strengthens a special case of Gromov’s open dense orbit theorem, and implies that for smooth M and simple G, if Gromov’s representation theorem does not hold, then the local Killing fields on \({\widetilde{M}}\) are highly non-extendable. As applications of the generalized centralizer and representation theorems, we prove (1) a structural property of Iso(M) for simply connected compact analytic M with unimodular σ, (2) three results illustrating the phenomenon that if G is split solvable and large then π 1(M) is also large, and (3) two fixed point theorems for split solvable G and compact analytic M with non-unimodular σ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams S.: Dynamics on Lorentz Manifolds. World Scientific Publishing Co. Inc., River Edge, NJ (2001)

    Book  MATH  Google Scholar 

  2. Bader U., Frances C., Melnick K.: An embedding theorem for automorphism groups of Cartan geometries. Geom. Funct. Anal. 19(2), 333–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benoist Y.: Orbites des structures rigides (d’aprs M. Gromov), Integrable systems and foliations, pp. 1–17. Birkhäuser, Boston (1997)

    Book  Google Scholar 

  4. Benoist Y., Foulon P., Labourie F.: Flots d’Anosov à distributions stable et instable différentiables. J. Am. Math. Soc. 5(1), 33–74 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Benoist Y., Labourie F.: Sur les difféomorphismes d’Anosov affines à feuilletages stable et instable différentiables. Invent. Math. 111(2), 285–308 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benveniste E.J., Fisher D.: Nonexistence of invariant rigid structures and invariant almost rigid structures. Comm. Anal. Geom. 13(1), 89–111 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Borel A.: Density properties for certain subgroups of semi-simple groups without compact components. Ann. Math. 72(2), 179–188 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borel A.: Linear Algebraic Groups, 2nd edn. Springer, New York (1991)

    Book  MATH  Google Scholar 

  9. Candel A., Quiroga-Barranco R.: Gromov’s centralizer theorem. Geom. Dedicata 100, 123–155 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candel A., Quiroga-Barranco R.: Parallelisms, prolongations of Lie algebras and rigid geometric structures. Manuscripta Math. 114(3), 335–350 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Ambra G.: Isometry groups of Lorentz manifolds. Invent. Math. 92(3), 555–565 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Ambra G., Gromov M.: Lectures on transformation groups: geometry and dynamics, Surveys in differential geometry, pp. 19–111. Lehigh University, Bethlehem, PA (1991)

    Google Scholar 

  13. Dani S.G.: On ergodic quasi-invariant measures of group automorphism. Israel J. Math. 43, 62–74 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dumitrescu S.: Meromorphic almost rigid geometric structures. Geometry, Rigidity, and Group Actions. University of Chicago Press, Chicago, IL (2011)

    Google Scholar 

  15. Effros E.G.: Transformation groups and C*-algebras. Ann. Math. 81(2), 38–55 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feres, R.: Rigid geometric structures and actions of semisimple Lie groups, Rigidité, groupe fondamental et dynamique, pp. 121–167, Soc. Math. France, Paris (2002)

  17. Feres, R., Katok, A.: Ergodic theory and dynamics of G-spaces (with special emphasis on rigidity phenomena). Handbook of dynamical systems, vol. 1A, pp. 665–763, North-Holland, Amsterdam (2002)

  18. Fisher D.: Groups acting on manifolds: around the Zimmer program Geometry, Rigidity, and Group Actions. University of Chicago Press, Chicago, IL (2011)

    Google Scholar 

  19. Fisher D., Zimmer R.J.: Geometric lattice actions, entropy and fundamental groups. Comment. Math. Helv. 77(2), 326–338 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gromov M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gromov M.: Rigid Transformations Groups, Géométrie Différentielle, pp. 65–139. Hermann, Paris (1988)

    Google Scholar 

  22. Knapp A.W.: Lie Groups Beyond an Introduction, 2nd edn. Birkhäuser Boston Inc., Boston, MA (2002)

    MATH  Google Scholar 

  23. Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. I. Wiley, New York (1996)

    Google Scholar 

  24. Labourie, F.: Large groups actions on manifolds. In: Proceedings of the International Congress of Mathematicians, vol. II (Berlin, 1998), Doc. Math., 1998, Extra vol. II, pp. 371–380

  25. Melnick, K.: A Frobenius theorem for Cartan geometries, with applications (preprint)

  26. Moerdijk I., Mrčun J.: Introduction to Foliations and Lie Groupoids. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  27. Morris D.W.: Ratner’s Theorems on Unipotent Flows. University of Chicago Press, Chicago, IL (2005)

    MATH  Google Scholar 

  28. Nevo A., Zimmer R.J.: Invariant rigid geometric structures and smooth projective factors. Geom. Funct. Anal. 19(2), 520–535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Platonov V., Rapinchuk A.: Algebraic Groups and Number Theory. Academic Press Inc., Boston, MA (1994)

    MATH  Google Scholar 

  30. Ratner M.: Strict measure rigidity for unipotent subgroups of solvable groups. Invent. Math. 101(2), 449–482 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rosenlicht M.: A remark on quotient spaces. An. Acad. Brasil. Ci. 35, 487–489 (1963)

    MathSciNet  Google Scholar 

  32. Shalom Y.: Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan’s property (T). Trans. Am. Math. Soc. 351, 3387–3412 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stuck G.: Minimal actions of semisimple groups. Ergodic Theory Dynam. Syst. 16(4), 821–831 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Varadarajan V.S.: Groups of automorphisms of Borel spaces. Trans. Am. Math. Soc. 109, 191–220 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  35. Varadarajan V.S.: Lie Groups, Lie Algebras, and Their Representations. Springer, New York (1984)

    MATH  Google Scholar 

  36. Zeghib A.: On Gromov’s theory of rigid transformation groups: a dual approach. Ergodic Theory Dynam. Syst. 20, 935–946 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zeghib, A.: Sur les groupes de transformations rigides: théorème de l’orbite dense-ouverte, Rigidité, groupe fondamental et dynamique, 169–188, Soc. Math. France, Paris (2002)

  38. Zimmer R.J.: Ergodic Theory and Semisimple Groups. Birkhäuser Verlag, Basel (1984)

    MATH  Google Scholar 

  39. Zimmer, R.J.: Actions of semisimple groups and discrete subgroups, Proceedings of the International Congress of Mathematicians, (Berkeley, Calif., 1986), pp. 1247–1258, Am. Math. Soc., Providence, RI (1987)

  40. Zimmer R.J.: Split rank and semisimple automorphism groups of G-structures. J. Differ. Geom. 26(1), 169–173 (1987)

    MathSciNet  MATH  Google Scholar 

  41. Zimmer, R.J.: Automorphism groups and fundamental groups of geometric manifolds. In: Differential geometry: Riemannian geometry, 693–710, Proceedings of Sympososium on Pure Mathematics, 54, Part 3, Am. Math. Soc., Providence, RI (1993)

  42. Zimmer R.J., Morris D.W.: Ergodic Theory, Groups, and Geometry. American Mathematical Society, Providence, RI (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinpeng An.

Additional information

Research partially supported by NSFC grant 10901005 and FANEDD grant 200915.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, J. Rigid geometric structures, isometric actions, and algebraic quotients. Geom Dedicata 157, 153–185 (2012). https://doi.org/10.1007/s10711-011-9603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-011-9603-2

Keywords

Mathematics Subject Classification (2000)

Navigation