Skip to main content

Advertisement

Log in

The evolution of standard cell libraries for future technology nodes

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Evolvable Hardware has been a discipline for over 15 years. Its application has ranged from simple circuit design to antenna design. However, research in the field has often been criticised for not addressing real world problems. Intrinsic variability has been recognised as one of the major challenges facing the semiconductor industry. This paper describes an approach that optimises designs within a standard cell library by altering the transistor dimensions. The proposed approach uses a Multi-objective Genetic Algorithm to optimise the device widths within a standard cell. The designs are analysed using statistically enhanced transistor models (based on 3D-atomistic simulations) and statistical Spice simulations. The goal is to extract high-speed and low-power designs, which are more tolerant to the random fluctuations present in current and future technology nodes. The results show improvements in both the speed and power of the optimised standard cells and that the impact of threshold voltage variation is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Negative-Bias Temperature Instability.

  2. Multi-Objective Toolkit for Intrinsic Variability Aware Transistor-level Evolutionary Design.

References

  1. A. Asenov, Random dopant induced threshold voltage lowering and fluctuations in sub 50 nm MOSFETs: a statistical 3D ’atomistic’ simulation study. Nanotechnology 10, 153–158 (1999)

    Article  Google Scholar 

  2. A. Asenov, Variability in the next generation CMOS technologies and impact on design. In Proceedings of the 1st International Conference of CMOS Variability (2007)

  3. A. Asenov, S. Kaya, J. Davies, Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness variations. IEEE Trans. Electron Devices 49, 112–119 (2002)

    Article  Google Scholar 

  4. J.B. Bernstein, M. Gurfinkela, X. Lia, J. Waltersa, Y. Shapiraa, M. Talmora, Electronic circuit reliability modeling. Microelectron. Reliab. 46(12), 1957–1979 (2006)

    Article  Google Scholar 

  5. K. Bernstein, D.J. Frank, A.E. Gattiker, W. Haensch, B.L. Ji, S.R. Nassif, E.J. Nowak, D.J. Pearson, N.J. Rohrer, High-performance CMOS variability in the 65-nm regime and beyond. IBM J. Res. Dev. Adv. Silicon Technol. 50(4/5), 433–449 (2006)

    Article  Google Scholar 

  6. M.T. Bohr, R.S. Chau, T. Ghani, K. Mistry, The high-k solution. IEEE Spectr. 10, 1–6 (2007)

    Google Scholar 

  7. S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, V. De, Parameter variations and impact on circuits and microarchitecture. In Proceedings of the 40th Annual Design Automation Conference (DAC) (ACM Press, 2003), pp. 338–342

  8. A.R. Brown, G. Roy, A. Asenov, Impact of fermi level pinning at polysilicon gate grain boundaries on nano-MOSFET variability: a 3-D simulation study. In Proceedings of the 36th European Solid-State Device Research Conference (ESSDERC) (2006), pp. 451–454

  9. BSIM Research Group, Electrical Engineering and Computer Science Department, University of California at Berkeley: Berkeley short-channel IGFET model 4 (BSIM4) latest news (2009) http://www.device.eecs.berkeley.edu/~bsim3/bsim4.html

  10. B. Davis, Intel server update (2009) http://download.intel.com/pressroom/pdf/nehalem-ex.pdf

  11. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 181–197 (2002)

    Article  Google Scholar 

  12. G. Declerck, A look into the future of nanoelectronics. In: Symposium on VLSI Technology Digest of Technical Papers (IEEE Press, 2005), pp. 6–10

  13. A. Djupdal, P.C. Haddow, Evolving efficient redundancy by exploiting the analogue nature of CMOS transistors. In Proceedings of the 4th International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS) (2007), pp. 81–86

  14. A. Djupdal, P.C. Haddow, The route to a defect tolerant LUT through artificial evolution. In Genetic Programming and Evolvable Machines: Special Issue on Evolvable Hardware Challenges (2011)

  15. W. Eccleston, The effect of polysilicon grain boundaries on MOS based devices. Microelectron. Eng. 48, 105–108 (1999)

    Article  Google Scholar 

  16. Electrical Engineering and Computer Science Department, University of California at Berkeley, SPICE: Simulation program with integrated circuit emphasis (2011) http://bwrc.eecs.berkeley.edu/Classes/icbook/SPICE/

  17. Gold Standard Simulations Ltd (GSS): Randomspice (2010) http://www.goldstandardsimulations.com/services/circuit-simulation/random-spice/

  18. G. Greenwood, A. Tyrrell, Introduction to Evolvable Hardware: A Practical Guide for Designing Self-Adaptive Systems. (Wiley, New York, 2007)

    Google Scholar 

  19. H. Hemmi, J. Mizoguchi, K. Shimohara, Development and evolution of hardware behaviors. In Artificial Life IV: Proceedings of the 4th International Workshop Synthesis Simulation Living Systems (MIT Press, 1994), pp. 371–376

  20. J.A. Hilder, J.A. Walker, A.M. Tyrrell, Optimising variability tolerant standard cell libraries. In Proceedings of the 11th Congress on Evolutionary Computation (CEC) (IEEE Press, Trondheim, 2009), pp. 2273–2280

  21. S. Inaba, K. Okano, S. Matsuda, M. Fujiwara, A. Hokazono, K. Adachi, K. Ohuchi, H. Suto, H. Fukui, T. Shimizu, S. Mori, H. Oguma, A. Murakoshi, T. Itani, T. Iinuma, T. Kudo, H. Shibata, S. Taniguchi, M. Takayanagi, A. Azuma, H. Oyamatsu, K. Suguro, Y. Katsumata, Y. Toyoshima, H. Ishiuchi, High performance 35 nm gate length CMOS with NO oxynitride gate dielectric and Ni salicide. IEEE Trans. Electron Devices 49(12), 2263–2270 (2002)

    Article  Google Scholar 

  22. V. Kheterpal, V. Rovner, T.G. Hersan, D. Motiani, Y. Takegawa, A.J. Strojwas, L. Pileggi, Design methodology for IC manufacturability based on regular logic-bricks. In Proceedings of the 42nd Annual Design Automation Conference (ACM Press, 2005), pp. 353–358

  23. J. Lohn, G. Hornby, D. Linden, Rapid re-evolution of an X-band antenna for NASA’s space technology 5 mission. In Genetic Programming Theory and Practice III (Kluwer, 2005)

  24. J. Lohn, G. Hornby, D. Linden, Human-competitive evolved antennas. Artif. Intell. Eng. Design Anal. Manuf. 22(3), 235–247 (2008) Cambridge University Press

    Google Scholar 

  25. T. Matsunawa, H. Nosato, H. Sakanashi, M. Murakawa, E. Takahashi, T. Terasawa, T. Tanaka, O. Suga, T. Higuchi, Adaptive optical proximity correction using an optimization method. In Proceedings of the 7th IEEE International Conference on Computer and Information Technology (CIT) (IEEE Press, 2007), pp. 853–860

  26. C. Millar, D. Reid, G. Roy, S. Roy, A. Asenov, Accurate statistical description of random dopant induced threshold voltage variability. IEEE Electron Device Lett. 29(8) (2008)

  27. J.F. Miller, D. Job, V.K. Vassilev, Principles in the evolutionary design of digital circuits—part I. Genet. Program. Evol. Mach. 1, 8–35 (2000)

    Google Scholar 

  28. M. Mizuno, V. De (eds) Design for variability in logic, memory and microprocessor. In VLSI Circuits Proceedings. Kyoto, Japan (2007)

  29. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  30. V. Moroz, Design for manufacturability: OPC and stress variations. In Proceedings of the 1st International Conference on CMOS Variability (2007)

  31. B. Nikolic, L. Pang, Measurements and analysis of process variability in 90 nm CMOS. In Proceedings of the 8th International Conference on Solid-State and Integrated Circuit Technology (2006), pp. 505–508

  32. K.V. Noren, J.E. Ross, Analog circuit design using genetic algorithms. In 2nd Online Symposium for Electronic Engineers (2001)

  33. D. Reid, C. Millar, G. Roy, S. Roy, A. Asenov, Analysis of threshold voltage distributions due to random dopants: a 100,000 sample 3D simulation study. IEEE Trans. Electron Devices 56(10), 2255–2263 (2009)

    Article  Google Scholar 

  34. D. Reid, C. Millar, G. Roy, S. Roy, A. Asenov, Statistical enhancement of combined simulations of RDD and LER variability: What can simulation of a 105 sample teach us? In Proceedings of the International Electron Devices Meeting (IEDM) (IEEE Computer Society, 2009), pp. 657–660

  35. J.E. Rubio, M. Jaraiz, I. Martin-Bragado, R. Pinacho, P. Castrillo, J. Barbolla, Physically based modelling of damage, amorphization and recrystallization for predictive device-size process simulation. Mater. Sci. Eng. B 114–115, 151–155 (2004)

    Article  Google Scholar 

  36. R. Salomon, F. Sill, High-speed, low-leakage integrated circuits: an evolutionary algorithm perspective. J. Syst. Archit. 53, 321–327 (2007)

    Article  Google Scholar 

  37. Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors (ITRS): 2006 Update, Overview and Working Group Summaries (2006) http://www.itrs.net/Links/2006Update/FinalToPost/00_ExecSum2006Update.pdf

  38. Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors (ITRS): 2009 Edition Executive Summary (2009) http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_ExecSum.pdf

  39. A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, M. Ferguson, V. Duong, Taking evolutionary circuit design from experimentation to implementation: some useful techniques and a silicon demonstration. IEE Proc. Comput. Digit. Tech. 151(4), 295–300 (2004) IEEE Press

    Article  Google Scholar 

  40. M.J. Streeter, M.A. Keane, J.R. Koza, Automatic synthesis using genetic programming of both the topology and sizing for five post-2000 patented analog and mixed-analog digital circuits. In Proceedings of the Southwest Symposium on Mixed-Signal Design (IEEE Circuits and Systems Society, 2003), pp. 5–10

  41. B.G. Streetman, S. Banerjee, Solid State Electronic Devices. (Prentice-Hall, Upper Saddle River, 2005)

    Google Scholar 

  42. E. Takahashi, M. Murakawa, Y. Kasai, T. Higuchi, Power dissipation reductions with genetic algortihms. In Proceedings of the NASA/DOD Conference on Evolvable Hardware (IEEE Computer Society, 2003), p. 111

  43. J.W. Tschanz, J.T. Kao, S.G. Narendra, R. Nair, D.A. Antoniadis, A.P. Chandrakasan, V. De, Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage. IEEE J. Solid State Circuits 37(11), 1396–1402 (2002)

    Article  Google Scholar 

  44. J.A. Walker, J.A. Hilder, A.M. Tyrrell, Evolving variability-tolerant CMOS designs. In Proceedings of the 9th International Conference on Evolvable Systems: From Biology to Hardware (ICES), Lecture Notes in Computer Science, vol. 5216 (Springer, 2008), pp. 308–319

  45. J.A. Walker, J.A. Hilder, A.M. Tyrrell, Towards evolving industry-feasible intrinsic variability tolerant CMOS designs. In Proceedings of the 11th Congress on Evolutionary Computation (CEC) (IEEE Press, Trondheim, 2009), pp. 1591–1598

  46. X. Yao, T. Higuchi, Promises and challenges of evolvable hardware. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 29(1), 87–97 (2002) IEEE Press

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and reviewers for their comments and suggestions to improve the quality of this paper. The authors would like to thank all partners of the EPSRC funded Nano-CMOS project (ref: EP/E001610/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Alfred Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, J.A., Hilder, J.A., Reid, D. et al. The evolution of standard cell libraries for future technology nodes. Genet Program Evolvable Mach 12, 235–256 (2011). https://doi.org/10.1007/s10710-011-9131-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-011-9131-8

keywords

Navigation