Skip to main content

Advertisement

Log in

Geo spatial variation of dengue risk zone in Madurai city using autocorrelation techniques

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

Dengue is a microorganism sickness transmitted by the yellow-fever (mosquito Aedes aegypti) mosquito. The global incidence of dengue has grown dramatically in recent decades. In Madurai, dengue fever and dengue hemorrhagic fever has shown an increasing trend. Data associated with dengue fever was gathered from the varied government health agencies. This study analysed dengue cases from 2009–2015 in different precincts in Madurai city. It associates with “Z” score variation based on GIS techniques. Moran’s I, average nearest neighborhood and kernel density estimation were used to access spatial distribution cases. The result showed that dengue cases were spatially random (p < 0.0001) by using spatial autocorrelation analysis showed dengue cases within the Madurai wards were highly clustered and occurred at an average distance of 143.56 m. Several locations, especially residential areas had been identified as hot spots of dengue cases in the Madurai city used by using kernel density estimation analysis. It will helpful for health officers in developing efficient control measures and contingency programs in identifying and prioritizing their efforts ineffective dengue control activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal, R., Kapoor, S., Nagar, R., Misra, A., Tandon, R., Mathur, A., et al. (1999). A clinical study of the patients with dengue hemorrhagic fever during the epidemic of 1996 at Lucknow, India. The Southeast Asian Journal of Tropical Medicine and Public Health, 30(4), 735–740.

    Google Scholar 

  • Ali, M., Wagatsuma, Y., Emch, M., & Breiman, R. F. (2003). Use of a geographic information system for defining spatial risk for dengue transmission in Bangladesh: Role for Aedes albopictus in an urban outbreak. American Journal of Tropical Medicine and Hygiene, 69(6), 634–640. https://doi.org/10.4269/ajtmh.2003.69.634

    Article  Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.

    Article  Google Scholar 

  • Balaji, D., & Saravanabavan, V. (2015). Rainfall Distribution and Identification of Vector Borne Diseases in Madurai City—A GIS Approach, Paper published in the book chapter Geospatial Technologies for Resource Evaluation and Management’ Madurai (Vol. 1, 1st ed., pp. 456–462). ISBN 978-93-841932-36-2.

  • Balaji, D., & Saravanabavan, V. (2019). A geo medical analysis of dengue cases in Madurai city-Tamilnadu India. GeoJournal. https://doi.org/10.1007/s10708-019-10006-4.

    Article  Google Scholar 

  • Barrera, R. (2011). Spatial stability of adult Aedes aegypti populations. American Journal of Tropical Medicine and Hygiene, 85(6), 1087–1092. https://doi.org/10.4269/ajtmh.2011.11-0381

    Article  Google Scholar 

  • Begum, A. S., Alok, S., & Nessa, S. (2019). Larval survey and spatial epidemiological analysis of vector Aedes aegypti to study the risk of dengue outbreak in India. GeoJournal. https://doi.org/10.1007/s10708-019-10060-y.

    Article  Google Scholar 

  • Bertazzon, S., Olson, S., & Knudtson, M. (2010). A spatial analysis of the demographic and socio-economic variables associated with cardiovascular disease in Calgary (Canada). Applied Spatial Analysis and Policy, 3(1), 1–23. https://doi.org/10.1007/s12061-009-9027-7.

    Article  Google Scholar 

  • Busgeeth, K., & Rivett, U. (2004). The use of a spatial information system in the management of HIV/AIDS in South Africa. International Journal of Health Geographics, 3(1), 13. https://doi.org/10.1186/1476-072X-3-13.

    Article  Google Scholar 

  • Brownstein, J. S., Rosen, H., Prudy, D., Miller, J. R., Merlino, M., Mostashari, F., et al. (2002). Spatial analysis of West Nile Virus: Rapid risk assessment of an introduced vector-borne zoonosis. Vector Borne Zoonotic Diseases, 2(3), 101–112. https://doi.org/10.1089/15303660260613729.

    Article  Google Scholar 

  • Carey, D. E., Myers, R. M., Webb, J. K., & Reuben, R. (1969). Japanese encephalitis in South India. A summary of recent knowledge. Journal of the Indian Medical Association, 52(1), 10–15.

    Google Scholar 

  • Centers for Disease Control and Prevention [CDCP] (2013). Antibiotic Resistance Threats. https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf FactSheet. https://www.cdc.gov/ncidod/dvbid/Dengue/. Reterived from October 21, 2013.

  • Eisen, L., & Eisen, R. J. (2011). Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases. Annual Review of Entomology, 56, 41–61. https://doi.org/10.1146/annurev-ento-120709-144847.

    Article  Google Scholar 

  • ESRI. 2010. ArcGIS Resource Center: Supplementary Spatial Statistics Toolbox. https://resources.arcgis.com/gallery/file/geoprocessing/details?entryID=8E548CF9-1422-2418-8855-2ED418793771.

  • Fischer, M. M., & Getis, A. (Eds.). (2009). Handbook of applied spatial analysis: Software tools, methods and applications. Berlin: Springer. https://doi.org/10.1007/978-3-642-03647-7.

    Book  Google Scholar 

  • Foster, J. E., Bennett, S. N., Vaughan, H., Vorndam, V., McMillan, W. O., & Carrington, C. V. F. (2003). Molecular evolution and phylogeny of dengue type 4 virus in the Caribbean. Virology. https://doi.org/10.1016/S0042-6822(02)00033-8.

    Article  Google Scholar 

  • Ganesan, J., & Saravanabavan, V. (2018). Nutritional problems of Anaemia disorders among the Tea plantation labourers in Nilgiris district—A Geo Medical Study. IJSRSET, 4(4), 1360–1366. https://doi.org/10.13140/RG.2.2.29982.08008.

    Article  Google Scholar 

  • Kabilan, L., Balasubramanian, S., Keshava, S. M., & Satyanarayana, K. (2005). The 2001 dengue epidemic in Chennai. The Indian Journal of Pediatrics, 72(11), 919–923.

    Article  Google Scholar 

  • Kishore, J., Singh, J., Dhole, T. N., & Ayyagari, A. (2006). Clinical and serological study of first large epidemic of dengue in and around Lucknow, India, in 2003. Dengue Bulletin, 30, 72–79.

    Google Scholar 

  • Haining, R. (2004). Spatial data analysis theory and practice. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hemme, R. R., Tank, J. L., Chadee, D. D., & Severson, D. W. (2009). Environmental conditions in water storage drums and influences on Aedes aegypti in Trinidad, West Indies. Acta tropica, 112(1), 59–66. https://doi.org/10.1016/j.actatropica.2009.06.008.

    Article  Google Scholar 

  • Hu, Z., & Rao, K. R. (2009). Particulate air pollution and chronic ischemic heart disease in the eastern United States: A county level ecological study using satellite aerosol data. Environmental Health, 8(1), 26. https://doi.org/10.1186/1476-069X-8-26.

    Article  Google Scholar 

  • Jones, P. G., & Gladkov, A. (1999). FloraMap. A computer tool for predicting the distribution of plants and other organisms in the wild. Version 1. CIAT CD-ROM Series, Cali, Colombia (1CD-ROM and manual).

  • Jeffery, J. A., Yen, N. T., Nam, V. S., Nghia, L. T., Hoffmann, A. A., Kay, B. H., et al. (2009). Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue. PLoS Neglected Tropical Diseases, 3(11), e552. https://doi.org/10.1371/journal.pntd.0000552.

    Article  Google Scholar 

  • Minhas, S., & Sekhon, H. (2013). Entomological survey of Dengue vector in an institutional campus to determine whether potential of Dengue outbreak exists. International Journal of Medical and Applied Science, 2(4), 164. ISSN:2320-3137.

  • Murray, E. J., Marais, B. J., Mans, G., Beyers, N., Ayles, H., Godfrey-Faussett, P., et al. (2009). A multidisciplinary method to map potential tuberculosis transmission ‘hot spots’ in high-burden communities. The International Journal of Tuberculosis and Lung Disease, 13(6), 767–774.

    Google Scholar 

  • Myers, R. M., Carey, D. E., Banerjee, K., Reuben, R., & Ramamurti, D. V. (1968). Recovery of dengue type 3 virus from human serum and Aedes aegypti in South India. Indian Journal of Medical Research, 56(6), 781–787.

    Google Scholar 

  • Myers, R. M., Varkey, M. J., Reuben, R., & Jesudass, E. S. (1970). Dengue outbreak in Vellore, southern India, in 1968 with isolation of four dengue types from man and mosquitoes. Indian Journal of Medical Research, 58(1), 24–30.

    Google Scholar 

  • Mondini, A., & Chiaravalloti-Neto, F. (2008). Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city. Science of the Total Environment, 393(2–3), 241–248. https://doi.org/10.1016/j.scitotenv.2008.01.010.

    Article  Google Scholar 

  • Nakhapakorn, K., & Jirakajohnkool, S. (2006). Temporal and spatial autocorrelation statistics of dengue fever.

  • Pace, R. K., Barry, R., & Sirmans, C. F. (1998). Spatial statistics and real estate. The Journal of Real Estate Finance and Economics, 17(1), 5–13. https://doi.org/10.1023/A:1007783811760

    Article  Google Scholar 

  • Paramasivan, R., Thenmozhi, V., Hiriyan, J., Dhananjeyan, K. J., Tyagi, B. K., & Dash, A. P. (2006). Serological & entomological investigations of an outbreak of dengue fever in certain rural areas of Kanyakumari district, Tamil Nadu. Indian Journal of Medical Research, 123(5), 697.

    Google Scholar 

  • Peleg, K., & Pliskin, J. S. (2004). A geographic information system simulation model of EMS: Reducing ambulance response time. American Journal of Emergency Medicine, 22(3), 164–170. https://doi.org/10.1016/j.ajem.2004.02.003.

    Article  Google Scholar 

  • Peterson, A. T., Sánchez-Cordero, V., Beard, C. B., & Ramsey, J. M. (2002). Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging Infectious Diseases, 8(7), 662. https://doi.org/10.3201/eid0807.010454.

    Article  Google Scholar 

  • Peterson, A. T., Vieglais, D. A., & Andreasen, J. K. (2003). Migratory birds J.B. Malone—biology-based mapping of vector-borne parasites 49 modeled as critical transport agents for West Nile Virus in North America. Vector-Borne and Zoonotic Diseases, 3(1), 27–37. https://doi.org/10.1089/153036603765627433.

    Article  Google Scholar 

  • Ping, J. L., Green, C. J., Zartman, R. E., & Bronson, K. F. (2004). Exploring spatial dependence of cotton yield using global and local autocorrelation statistics. Field Crops Research, 89(2–3), 219–236. https://doi.org/10.1016/j.fcr.2004.02.009.

    Article  Google Scholar 

  • Pouliou, T., & Elliott, S. J. (2009). An exploratory spatial analysis of overweight and obesity in Canada. Preventive Medicine, 48(4), 362–367. https://doi.org/10.1016/j.ypmed.2009.01.017.

    Article  Google Scholar 

  • Tsai, P. J., Lin, M. L., Chu, C. M., & Perng, C. H. (2009). Spatial autocorrelation analysis of health case hotspots in Taiwan in 2006. BMC Public Health, 9, 464.

    Article  Google Scholar 

  • Russell, R. C., & Ritchie, S. A. (2004). Surveillance and behavioral investigations of Aedes aegypti and Aedes polynesiensis in Moorea, French Polynesia, using a sticky ovitrap. Journal of the American Mosquito Control Association, 20(4), 370–375.

    Google Scholar 

  • Russell, R. C., Webb, C. E., Williams, C. R., & Ritchie, S. A. (2005). Mark-release-recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Medical and Veterinary Entomology, 19(4), 451–457. https://doi.org/10.1111/j.1365-2915.2005.00589.x.

    Article  Google Scholar 

  • Rotela, C., Fouque, F., Lamfri, M., Sabatier, P., Introini, V., Zaidenberg, M., et al. (2007). Space-time analysis of the dengue spreading dynamics in the 2004 Tartagel outbreak, Northern Argentina. Acta Tropica, 103, 1–13.

    Article  Google Scholar 

  • Saravanabavan, V., Balaji, D., & Preethi, S. (2019a). Identification of dengue risk zone: A geo-medical study on Madurai city. GeoJournal, 84(4), 1073–1087. https://doi.org/10.1007/s10708-018-9909-9.

    Article  Google Scholar 

  • Saravanabavan, V., Reejo, R. J., Neethidevi, A., & Jayashree, R. (2006). Travel and health care utilization pattern of patients in Vadippati panchayat union: A micro level study using GIS. Journal of Deccan Geographer, Pune, 44(2), 97–108. ISSN 0011-7269.

  • Saravanabavan, V., Reshma, C. U., & Preethi, S. (2019b). Determinants of reproductive health in working women in Thrissur district, Kerala. GeoJournal. https://doi.org/10.1007/s10708-019-10051-z.

    Article  Google Scholar 

  • Saravanabavan, V., Sudharsan, R., Balaji, D., Rahamath Nisha, R. (2014). Patient’ perception and epidemiological characteristics of dengue in Madurai city—Using factor analysis. International Journal of Mosquito Research, 1(2), 18–24. ISSN: 2348-5906 CODEN: IJMRK2.

  • Singh, J., Balakrishnan, N., Bhardwaj, M., Amuthadevi, P., George, E. G., Subramani, K., et al. (2000). Silent spread of dengue and dengue haemorrhagic fever to Coimbatore and Erode districts in Tamil Nadu, India, 1998: Need for effective surveillance to monitor and control the disease. Epidemiology & Infection, 125(1), 195–200.

    Article  Google Scholar 

  • Sivagnaname, N., & Gunasekaran, K. (2012). Need for an efficient adult trap for the surveillance of dengue vectors. The Indian Journal of Medical Research, 136(5), 739.

    Google Scholar 

  • Srivastava, A., Nagpal, B. N., Joshi, P. L., Paliwal, J. C., & Dash, A. P. (2009). Identification of malaria hot spots for focused intervention in tribal state of India: a GIS based approach. International Journal of Health Geographics, 8(1), 30. https://doi.org/10.1186/1476-072X-8-30.

    Article  Google Scholar 

  • Srividya, A., Michael, E., Palaniyandi, M., Pani, S. P., & Das, P. K. (2002). A geostatistical analysis of the geographic distribution of lymphatic filariasis prevalence in southern India. American Journal of TropicalMedicine and Hygeine. https://doi.org/10.4269/ajtmh.2002.67.480.

    Article  Google Scholar 

  • Tripathi, P., Kumar, R., Tripathi, S., Tambe, J. J., & Venkatesh, V. (2008). Descriptive epidemiology of dengue transmission in Uttar Pradesh. Indian Pediatrics, 45(4), 315.

    Google Scholar 

  • Twumasi, Y. A., & Merem, E. C. (2005). GIS applications in land management: The loss of high quality land to development in central Mississippi from 1987–2002. International Journal of Environmental Research and Public Health, 2(2), 234–244.

    Article  Google Scholar 

  • Victor, T. J., Malathi, M., Gurusamy, D., & Desai, A. (2002). Dengue fever outbreaks in two villages of Dharmapuri district in Tamil Nadu. Indian Journal of Medical Research, 116, 133–139.

    Google Scholar 

  • Vimala Vinnarasi, J., & Saravanabavan, V. (2017). Tuberculosis types and its characteristics in Dindigul District—A geomedical study using GIS. International Journal of Geomatics and Geosciences, 7(3), 262–274.

    Google Scholar 

  • Wen, T.-H., Lin, N. H., Chao, D.-Y., Hwang, K.-P., Kan, C.-C., Lin, K. C.-M., et al. (2010). Spatial-temporal patterns of dengue in areas at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002. International Journal of Infectious Diseases, 14(4), e334–e343. https://doi.org/10.1016/j.ijid.2009.06.006.

    Article  Google Scholar 

  • World Health Organization. (2013). Dengue and Dengue Haemorrhagic Fever. Reterived October 22, 2013 from https://www.who.int/mediacentre/factsheets/fs117/en/.

  • Wu, P. C., Lay, J. G., Guo, H. R., Lin, C. Y., Lung, S. C., & Su, H. J. (2009). Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Science of the Total Environment, 407(7), 2224–2233. https://doi.org/10.1016/j.scitotenv.2008.11.034.

    Article  Google Scholar 

  • Yeshiwondim, A. K., Gopal, S., Hailemariam, A. T., Dengela, D. O., & Patel, H. P. (2009). Spatial analysis of malaria incidence at the village level in areas with unstable transmission in Ethiopia. International Journal of Health Geographics, 8(1), 5. https://doi.org/10.1186/1476-072X-8-5.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the ICSSR (Indian Council of Social Science Research) New Delhi for the financial assistance to carry out this research work. The authors also sincerely thank Department of Geography, Madurai Kamaraj University, Madurai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Balaji.

Ethics declarations

Conflict of interest

Sources of Funding for this research is from ICSSR (Indian Council of Social Science and Research, New Delhi). For this research the compliance with ethical standards is not applicable since only the data collected at various centers are used for spatial variation of Dengue cases.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, D., Saravanabavan, V. Geo spatial variation of dengue risk zone in Madurai city using autocorrelation techniques. GeoJournal 86, 1481–1501 (2021). https://doi.org/10.1007/s10708-020-10143-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-020-10143-1

Keywords

Navigation