Skip to main content

Advertisement

Log in

Beyond circularity! Integration of circularity, efficiency, and sufficiency for nutrient management in agri-food systems

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Circularity is a new paradigm of nutrient management that seeks to mitigate environmental impacts of agriculture by reducing nutrient losses through reuse. However, circular nutrient management is not a goal in itself, but rather a means of transition to sustainable food systems. We argue for a conceptually stronger and more explicit combination of circularity strategies with efficiency and sufficiency. To this end, we combine these three transition strategies into a conceptual framework that accounts for the relationship between them. An example of regional N flows is used to quantify the systemic effects of each strategy. Results show that circularity does not affect overall system’s efficiency but reduces primarily inputs. Circularity can also lead to rebound effects if reused products have a lower efficiency than the products they replace. Targeting efficiency as a strategy has systemic, non-linear negative effects, as it reduces opportunities for implementation of circular solutions and reuse of nutrients. Sufficiency as a strategy can affect circularity, as a shift towards a more plant-based diet will likely increase nutrient use efficiency, and will therefore reduce the available recoverable nutrients and limit circularity. Moreover, circularity, efficiency and sufficiency as strategies may have different time frames that policy makers and practitioners need to consider in their implementation efforts. Finally, regional nutrient management should aim to combine the three strategies in modelling, planning and decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Ignoring the use of virgin N outside the EU; Leip, A., Caldeira, C., Corrado, S., Hutchings, N.J., Lesschen, J.P., Schaap, M., de Vries, W., Westhoek, H. and van Grinsven, H.J.M. 2022. Halving nitrogen waste in the European Union food systems requires both dietary shifts and farm level actions. Global Food Security 35, 100,648.

  2. We refer here to system level NUE and not to the NUE of a arable production or a crop.

References

  • Aiking H, de Boer J (2020) The next protein transition. Trends Food Sci Technol 105:515–522. https://doi.org/10.1016/j.tifs.2018.07.008

    Article  CAS  Google Scholar 

  • Allen T, Prosperi P (2016) Modeling sustainable food systems. Environ Manage 57(5):956–975. https://doi.org/10.1007/s00267-016-0664-8

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Allievi F, Vinnari M, Luukkanen J (2015) Meat consumption and production—analysis of efficiency, sufficiency and consistency of global trends. J Clean Prod 92:142–151. https://doi.org/10.1016/j.jclepro.2014.12.075

    Article  Google Scholar 

  • Barbieri P, Pellerin S, Seufert V, Smith L, Ramankutty N, Nesme T (2021) Global option space for organic agriculture is delimited by nitrogen availability. Nature Food 2(5):363–372

    Article  PubMed  Google Scholar 

  • Biesbroek S, Kok FJ, Tufford AR, Bloem MW, Darmon N, Drewnowski A, Veer PVT (2023e) Toward healthy and sustainable diets for the 21st century: importance of sociocultural and economic considerations. Proc Natl Acad Sci 120(26):e2219272120. https://doi.org/10.1073/pnas.2219272120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell BM, Beare DJ, Bennett EM, Hall-Spencer JM, Ingram JS, Jaramillo F, Ortiz R, Ramankutty N, Sayer JA, Shindell D (2017) Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol Soc 22(4)

  • European Comission (2019) Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 (Text with EEA relevance), Brussels

  • European Commission (2020) Farm to fork strategy—for a fair, healthy and environmentally-friendly food system, European Commission.

  • Superior Health Council (2019) Dietary recommendations for the Belgian adult population

  • De Keyser E, Mathijs E (2023) A typology of sustainable circular business models with applications in the bioeconomy. Front Sustain Food Syst 6:1028877

    Article  Google Scholar 

  • De Meyer A, Cattrysse D, Van Orshoven J (2015) A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS). Eur J Oper Res 245(1):247–264. https://doi.org/10.1016/j.ejor.2015.02.045

    Article  MathSciNet  Google Scholar 

  • Dijst M, Worrell E, Böcker L, Brunner P, Davoudi S, Geertman S, Harmsen R, Helbich M, Holtslag AA, Kwan M-P (2018) Exploring urban metabolism—towards an interdisciplinary perspective, pp 190–203, Elsevier

  • Erisman J, Leach A, Bleeker A, Atwell B, Cattaneo L, Galloway J (2018) An integrated approach to a nitrogen use efficiency (NUE) indicator for the food production-consumption chain. Sustainability 10(4):925. https://doi.org/10.3390/su10040925

    Article  Google Scholar 

  • Fernandez-Mena H, Gaudou B, Pellerin S, MacDonald GK, Nesme T (2020) Flows in agro-food networks (FAN): an agent-based model to simulate local agricultural material flows. Agric Syst 180:102718. https://doi.org/10.1016/j.agsy.2019.102718

    Article  Google Scholar 

  • Figge F, Thorpe AS, Gutberlet M (2023) Definitions of the circular economy: circularity matters. Ecol Econ 208:107823. https://doi.org/10.1016/j.ecolecon.2023.107823

    Article  Google Scholar 

  • Giampietro M (2019) On the circular bioeconomy and decoupling: implications for sustainable growth. Ecol Econ 162:143–156. https://doi.org/10.1016/j.ecolecon.2019.05.001

    Article  Google Scholar 

  • Harder R, Giampietro M, Mullinix K, Smukler S (2021) Assessing the circularity of nutrient flows related to the food system in the Okanagan bioregion, BC Canada. Resour Conserv Recycl 174:105842. https://doi.org/10.1016/j.resconrec.2021.105842

    Article  CAS  Google Scholar 

  • Hutchings N, Nielsen O, Dalgaard T, Mikkelsen M, Børgesen C, Thomsen M, Ellermann T, Højberg A, Mogensen L, Winther M (2014) A nitrogen budget for Denmark; developments between 1990 and 2010, and prospects for the future. Environ Res Lett 9(11):115012

    Article  ADS  Google Scholar 

  • Hutchings NJ, Sørensen P, Cordovil CMDS, Leip A, Amon B (2020) Measures to increase the nitrogen use efficiency of European agricultural production. Glob Food Sec 26:100381. https://doi.org/10.1016/j.gfs.2020.100381

    Article  Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9(10):105011

    Article  ADS  Google Scholar 

  • Le Noë J, Billen G, Garnier J (2017) How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: the generalized representation of agro-food system applied at the regional scale in France. Sci Total Environ 586:42–55. https://doi.org/10.1016/j.scitotenv.2017.02.040

    Article  ADS  CAS  PubMed  Google Scholar 

  • Leip A, Billen G, Garnier J, Grizzetti B, Lassaletta L, Reis S, Simpson D, Sutton MA, De Vries W, Weiss F (2015) Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ Res Lett 10(11):115004. https://doi.org/10.1016/j.gfs.2022.100648

    Article  ADS  Google Scholar 

  • Leip A, Caldeira C, Corrado S, Hutchings NJ, Lesschen JP, Schaap M, de Vries W, Westhoek H, van Grinsven HJM (2022) Halving nitrogen waste in the European Union food systems requires both dietary shifts and farm level actions. Glob Food Sec 35:100648

    Article  Google Scholar 

  • McGreevy SR, Rupprecht CDD, Niles D, Wiek A, Carolan M, Kallis G, Kantamaturapoj K, Mangnus A, Jehlička P, Taherzadeh O, Sahakian M, Chabay I, Colby A, Vivero-Pol J-L, Chaudhuri R, Spiegelberg M, Kobayashi M, Balázs B, Tsuchiya K, Nicholls C, Tanaka K, Vervoort J, Akitsu M, Mallee H, Ota K, Shinkai R, Khadse A, Tamura N, Abe K-I, Altieri M, Sato Y-I, Tachikawa M (2022) Sustainable agrifood systems for a post-growth world. Nature Sustain 5(12):1011–1017. https://doi.org/10.1038/s41893-022-00933-5

    Article  Google Scholar 

  • Mekonnen MM, Neale CMU, Ray C, Erickson GE, Hoekstra AY (2019) Water productivity in meat and milk production in the US from 1960 to 2016. Environ Int 132:105084. https://doi.org/10.1016/j.envint.2019.105084

    Article  PubMed  Google Scholar 

  • Muller A, Schader C (2017) Efficiency, sufficiency, and consistency for sustainable healthy food. Lancet Planet Health 1(1):e13–e14. https://doi.org/10.1016/s2542-5196(17)30012-8

    Article  PubMed  Google Scholar 

  • Muys M, Papini G, Spiller M, Sakarika M, Schwaiger B, Lesueur C, Vermeir P, Vlaeminck SE (2020) Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: screening of correlations between operation parameters and microbial protein quality. Biores Technol 307:123242. https://doi.org/10.1016/j.biortech.2020.123242

    Article  CAS  Google Scholar 

  • Papangelou A, Mathijs E (2021) Assessing agro-food system circularity using nutrient flows and budgets. J Environ Manage 288:112383. https://doi.org/10.1016/j.jenvman.2021.112383

    Article  CAS  PubMed  Google Scholar 

  • Papangelou A, Achten WMJ, Mathijs E (2020) Phosphorus and energy flows through the food system of brussels capital region. Resour Conserv Recycl 156:104687. https://doi.org/10.1016/j.resconrec.2020.104687

    Article  Google Scholar 

  • European Parliament (2023) How the EU wants to achieve a circular economy by 2050. https://www.europarl.europa.eu/news/en/headlines/society/20210128STO96607/how-the-eu-wants-to-achieve-a-circular-economy-by-2050?gclid=CjwKCAjwkLCkBhA9EiwAka9QRm_WrKTsBVjgTRs9jxJjqJAWAEt-TKHFlpDE31_v5mZyGm14q--W2hoCADAQAvD_BwE

  • Rockström J, Gupta J, Qin D, Lade SJ, Abrams JF, Andersen LS, Armstrong Mckay DI, Bai X, Bala G, Bunn SE, Ciobanu D, Declerck F, Ebi K, Gifford L, Gordon C, Hasan S, Kanie N, Lenton TM, Loriani S, Liverman DM, Mohamed A, Nakicenovic N, Obura D, Ospina D, Prodani K, Rammelt C, Sakschewski B, Scholtens J, Stewart-Koster B, Tharammal T, Van Vuuren D, Verburg PH, Winkelmann R, Zimm C, Bennett EM, Bringezu S, Broadgate W, Green PA, Huang L, Jacobson L, Ndehedehe C, Pedde S, Rocha J, Scheffer M, Schulte-Uebbing L, De Vries W, Xiao C, Xu C, Xu X, Zafra-Calvo N, Zhang X (2023) Safe and just earth system boundaries. Nature. https://doi.org/10.1038/s41586-023-06083-8

  • Saheb Y (2021) COP26: sufficiency should be first, buildings and cities. https://www.buildingsandcities.org/insights/commentaries/cop26-sufficiency.html

  • Sigurnjak I, Brienza C, Snauwaert E, De Dobbelaere A, De Mey J, Vaneeckhaute C, Michels E, Schoumans O, Adani F, Meers E (2019) Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia (stripping-)scrubbing technology. Waste Manage 89:265–274. https://doi.org/10.1016/j.wasman.2019.03.043

    Article  CAS  Google Scholar 

  • Spiller M, Moretti M, De Paepe J, Vlaeminck SE (2022) Environmental and economic sustainability of the nitrogen recovery paradigm: evidence from a structured literature review. Resour Conserv Recycl 184:106406. https://doi.org/10.1016/j.resconrec.2022.106406

    Article  CAS  Google Scholar 

  • Tanzer J, Zoboli O, Zessner M, Rechberger H (2018) Filling two needs with one deed: potentials to simultaneously improve phosphorus and nitrogen management in Austria as an example for coupled resource management systems. Sci Total Environ 640–641:894–907. https://doi.org/10.1016/j.scitotenv.2018.05.177

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tur-Cardona J, Bonnichsen O, Speelman S, Verspecht A, Carpentier L, Debruyne L, Marchand F, Jacobsen BH, Buysse J (2018) Farmers’ reasons to accept bio-based fertilizers: a choice experiment in seven different European countries. J Clean Prod 197:406–416. https://doi.org/10.1016/j.jclepro.2018.06.172

    Article  Google Scholar 

  • van der Wiel BZ, Weijma J, van Middelaar CE, Kleinke M, Buisman CJN, Wichern F (2019) Restoring nutrient circularity: a review of nutrient stock and flow analyses of local agro-food-waste systems. Resourc Conserv Recycl X 3:100014. https://doi.org/10.1016/j.rcrx.2019.100014

    Article  Google Scholar 

  • Velasco-Muñoz JF, Mendoza JMF, Aznar-Sánchez JA, Gallego-Schmid A (2021) Circular economy implementation in the agricultural sector: definition, strategies and indicators. Resour Conserv Recycl 170:105618

    Article  CAS  Google Scholar 

  • Vingerhoets R, Spiller M, De Backer J, Adriaens A, Vlaeminck SE, Meers E (2023) Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region. J Clean Prod 410:137278. https://doi.org/10.1016/j.jclepro.2023.137278

    Article  CAS  Google Scholar 

  • Vonk J, Bannink A, van Bruggen C, Groenestein CM, Huijsmans JFM, van der Kolk J, Luesink H, Voshaar SO, Sluis S, Velthof GL (2016) Methodology for estimating emissions from agriculture in the Netherlands: calculations of CH4, NH3, N2O, NOx, PM10, PM2.5 and CO2 with the national emission model for agriculture (NEMA), Statutory research tasks unit for nature & the environment

  • Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, Declerck F, Wood A, Jonell M, Clark M, Gordon LJ, Fanzo J, Hawkes C, Zurayk R, Rivera JA, De Vries W, Majele Sibanda L, Afshin A, Chaudhary A, Herrero M, Agustina R, Branca F, Lartey A, Fan S, Crona B, Fox E, Bignet V, Troell M, Lindahl T, Singh S, Cornell SE, Srinath Reddy K, Narain S, Nishtar S, Murray CJL (2019) Food in the Anthropocene: the EAT–lancet commission on healthy diets from sustainable food systems. The Lancet 393(10170):447–492. https://doi.org/10.1016/s0140-6736(18)31788-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contributions of the colleagues of the sustainable, air, energy and water technology research group of the University of Antwerp. Their critical views were invaluable to improving the manuscript.

Funding

The funding was supported by Horizon 2020 (Grant No. 792021), HORIZON EUROPE European Research Council (Grant No. 862849).

Author information

Authors and Affiliations

Authors

Contributions

Marc Spiller - conceptualization, methodology, writing - original draft, writing - Review & Editing, Data curation, Visualization, Formal analysis Ruben Vingerhoets - Data curation, Writing - Review & Editing, Siegfried Vlaeminck - Review and Editing Florian Wichern - Conceptualization Anastasia Papangelou - Conceptualization, Formal analysis, Writing - original draft, Review and Editing

Corresponding author

Correspondence to Marc Spiller.

Ethics declarations

Conflict of interest

The authors declare not competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 43 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiller, M., Vingerhoets, R., Vlaeminck, S.E. et al. Beyond circularity! Integration of circularity, efficiency, and sufficiency for nutrient management in agri-food systems. Nutr Cycl Agroecosyst (2024). https://doi.org/10.1007/s10705-024-10339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10705-024-10339-8

Keywords

Navigation