Skip to main content
Log in

Statistical analysis of acoustic emission avalanches generated during the compressive fracture process, and Mode I fracture process in cementitious composites

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This article reports a statistical analysis of acoustic emission (AE) avalanches in cementitious composites generated during unconfined uniaxial compression and flexural loading. The analysis emphasises on the probability distribution of absolute AE energies of the individual AE events and on the time correlations (aftershock rate for Omori’s law and waiting time between successive AE events for Universal Scaling Law). Under compression, the G-R exponent (\(\epsilon\)) remained constant at 1.15, 1.21, 1.21 and 1.32 for specimens having steel volume fraction (Vf) 0%, 0.8%, 1.6% and 2% respectively, for at least three decades (represents the powers of ten, i.e., \(10^{1}\) is one decade, \(10^{2}\) is two decades and so on) under uniaxial compression. A decrease in \(\epsilon\) was observed as the damage in the material progressed for compressive fracture and Mode I fracture process. Distribution of other AE avalanche characteristics like inter-event time and waiting time (\(\delta )\) distribution show almost similar characteristics for varying Vf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Aggelis DG (2011) Classification of cracking mode in concrete by acoustic emission parameters. Mech Res Com 38(3):153–157

    Article  Google Scholar 

  • Bak P, Christensen K, Danon L, Scanlon T (2003) Unified Scaling Law for Earthquakes. Phys Rev Lett 88:178501

    Article  Google Scholar 

  • Baró J, Corral A, Illa X, Planes A, Salje EKH, Schranz W, Soto-Parra DE, Vives E (2013) Statistical similarity between the compression of a porous material and earthquakes. Phys Rev Lett 110:088702

    Article  Google Scholar 

  • Baró J, Martín-Olalla J, Romero F, Gallardo M, Salje E, Vives E, Planes A (2014) Avalanche correlations in the martensitic transition of a Cu-Zn-Al shape memory alloy: analysis of acoustic emission and calorimetry. J Phys Condens Matter 26:125401

    Article  Google Scholar 

  • Baró J, Planes A, Salje EKH, Vives E (2016) Fracking and labquakes. Philos Mag 96:686

    Article  Google Scholar 

  • Baró J, Shyu P, Pang S, Jasiuk IM, Vives E, Salje EKH, Planes A (2016) Avalanche criticality during compression of porcine cortical bone of different ages. Phys Rev E 93:053001

    Article  Google Scholar 

  • Baró J, Dahmen KA, Davidsen J, Planes A, Castillo PO, Nataf GF, Salje EKH, Vives E (2018) Experimental evidence of accelerated seismic release without critical failure in acoustic emissions of compressed nanoporous materials. Phys Rev Lett 120:245501

    Article  Google Scholar 

  • Bauke H (2007) Parameter estimation for power-law distributions by maximum likelihood methods. Eur Phys J B 58:167–173

    Article  Google Scholar 

  • Carpinteri A, Lacidogna G, Puzzi S (2009) From criticality to final collapse: evolution of the b-value from 1.5 to 1.0. Chaos Solitons Fractals 41:843–853

    Article  Google Scholar 

  • Carpinteri A, Lacidogna G, Corrado M, Di Battista E (2016) Cracking and crackling in concrete-like materials: a dynamic energy balance. Eng Fract Mech 155:130–144

    Article  Google Scholar 

  • Castillo-Villa PO, Baró J, Planes A, Salje EKH, Sellappan E, Kriven WM, Vives E (2013) Crackling noise during failure of alumina under compression: the effect of porosity. J Phys: Condens Matt 25:292202

    Google Scholar 

  • Drossel B, Schwabl F (1992) Self-organized critical forest-fire model. Phys Rev Letters 69(11):1629

    Article  Google Scholar 

  • Chen Y, Ding X, Fang D et al (2019) Acoustic emission from porous collapse and moving dislocations in granular Mg-Ho alloys under compression and tension. Sci Rep 9(1):1–12

    Article  Google Scholar 

  • Choi S, Shah SP, Thienel C (1996) Strain softening of concrete in compression under different end constraints. Mag Conc Res 48(175):103–115

    Article  Google Scholar 

  • Clauset A, Rohilla-Shalizi C, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703

    Article  MathSciNet  MATH  Google Scholar 

  • Colombo IS, Main IG, Forde M (2003) Assessing damage of reinforced concrete beam using b -value analysis of acoustic emission signals. J Mat Civil Eng 15:280–286

    Article  Google Scholar 

  • Corral A (2004) Universal local versus unified global scaling laws in the statistics of seismicity. Physica A 340:590–597

    Article  Google Scholar 

  • EN-14651 (2007) Test method for metallic fibre concrete—measuring the flexural tensile strength (Limit of Proportionality (LOP), Residual), Brussels, Belgium

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188

    Article  Google Scholar 

  • Helmstetter A (2003) Is earthquake triggering driven by small earthquakes? Phys Rev Lett 91:058501

    Article  Google Scholar 

  • Hoffmann H, Payton DW (2018) Optimisation by self-organised criticality. Sci Rep 8:2358

    Article  Google Scholar 

  • IS: 519 (2004) Method of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi, India

  • Jiang X, Liu H, Main IG, Salje EKH (2017) Predicting mining collapse: superjerks and the appearance of record-breaking events in coal as collapse precursors. Phys Rev E 96:023004

    Article  Google Scholar 

  • Katsnelson MI, Vanchurin V, Westerhout T (2021). Self-organized criticality in neural networks. arXiv preprint https://arxiv.org/abs/arXiv:2107.03402.

  • Lacidogna G, Accornero F, Carpinteri A (2019) Influence of snap-back instabilities on Acoustic Emission damage monitoring. Eng Fract Mech 210:3–12

    Article  Google Scholar 

  • Lavrov AV, Shkuratnik VL (2005) Deformation and fracture induced acoustic emission in rocks. Acoust Phys 51:S2–S11

    Article  Google Scholar 

  • Mäkinen T, Miksic A, Ovaska M, Alava MJ (2015) Avalanches in Wood Compression. Phys Rev Lett 115:055501

    Article  Google Scholar 

  • Nataf GF, Castillo-Villa PO, Baró J, Illa X, Vives E, Planes A, Salje EKH (2014) Avalanches in compressed porous SiO2-based materials. Phys Rev E 90:2405

    Google Scholar 

  • Nataf GF, Castillo-Villa PO, Sellappan P, Kriven WM, Vives E, Planes A, Salje EKH (2014) Predicting failure: acoustic emission of berlinite under compression. J Phys Condens Matter 26:275401

    Article  Google Scholar 

  • Navas-Portella V, Corral A, Vives E (2016) Avalanches and force drops in displacement-driven compression of porous glasses. Phys Rev E 94:033005

    Article  Google Scholar 

  • Navas-Portella V, Serra I, Corral A, Vives E (2018) Increasing power-law range in avalanche amplitude and energy distributions. Phys Rev E 97:022134

    Article  Google Scholar 

  • Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46(5):323–351

    Article  Google Scholar 

  • Ribeiro HV, Costa LS, Alves LGA, Santoro PA, Picoli S, Lenzi EK, Mendes RS (2015) Analogies between the cracking noise of ethanol-dampened charcoal and earthquakes. Phys Rev Lett 115:025503

    Article  Google Scholar 

  • Salje EKH, Lamprosi GI, Soto-Parra DE, Baró J, Planes A, Vives E (2013) Noise of collapsing minerals: predictability of the compressional failure in goethite mines. Am Mineral 98:609

    Article  Google Scholar 

  • Salje EKH, Planes A, Vives E (2017) Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping. Phys Rev E 96 (042122)

  • Sethna JP, Dahmen KA, Myers CR (2001) Crackling noise. Nature 410:242–250

    Article  Google Scholar 

  • Soto-Parra D, Zhang X, Cao S, Vives E, Salje EKH, Planes A (2015) Avalanches in compressed Ti-Ni shape-memory porous alloys: An acoustic emission study. Phys Rev E 91:060401

    Article  Google Scholar 

  • Soto-Parra D, Vives E, Botello-Zubiate ME, Matutes-Aquino JA, Planes A (2018) Acoustic emission avalanches during compression of granular manganites. Appl Phys Lett 112:251906

    Article  Google Scholar 

  • Utsu T, Ogata Y, Matsu’ura RS (1995) The centenary of the omori formula for a decay law of aftershock activity. J Phys Earth 43(1):1–33

    Article  Google Scholar 

  • Vives E, Ortín J, Mañosa L, Ràfols I, Pérez-Magrané I, Planes A (1994) Distributions of avalanches in martensitic transformations. Phys Rev Lett 72:1694

    Article  Google Scholar 

  • Wang L, Jiang X, He X, Chu J, Xiao Y, Liu H, Salje EKH (2021) Crackling noise and biocementation. Eng Frac Mech 247:

    Article  Google Scholar 

  • Xu Y, Borrego AG, Planes A, Ding X, Vines E (2019) Criticality in failure under compression: Acoustic emission study of coal and charcoal with different microstructures. Phys Rev E 99:033001

    Article  Google Scholar 

  • Zapperi S, Vespignani A, Stanley HE (1997) Plasticity and avalanche behavior in microfracturing phenomena. Nature 388:658–660

    Article  Google Scholar 

  • Zhao YP (1998) On the similarity methods in fracture mechanics. Forsch Ingenieurwes 64(10):257

    Article  Google Scholar 

Download references

Funding

No funding was received to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

IS: investigation, formal analysis, data curation, software. RVS: conceptualization, methodology, writing—original draft, writing—review and editing, supervision, resources, project administration.

Corresponding author

Correspondence to R. Vidya Sagar.

Ethics declarations

Conflict of interest

The authors have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Relation between seismic \(b\)-value and \(\epsilon\)

Appendix A: Relation between seismic \(b\)-value and \(\epsilon\)


figure a

Appendix B: Implementation of Omori’s law


By analysing multiple aftershocks, the relation between average aftershock rate (\(r_{AS}\)) (i.e., number of aftershocks per unit time) as a function of the time difference from the instance of mainshock \(\left( {\Delta t = t - t_{MS} } \right)\) can be studied (Utsu et al. 1995),

$$ r_{AS} \left( {\Delta t} \right) = K\left( {c + \Delta t} \right)^{p} $$
(B.1)

where K is a time-independent constant, is the Omori’s exponent, c is a small shift used to avoid a divergence at Δt = 0. The shift (c) is due to the undercounting of aftershock (overlapped with the mainshock) very close to the MS.

1.1 B.1. Implementation of the Productivity law

The \(r_{AS} \) would be constant \(\left( {p = 0} \right)\) if the earthquakes were Poissonian in Eq. (B.1). However, p has a value close to \(1.0\) for earthquakes. In Eq. (B.1), K determines the total number of aftershocks. K depends on the energy released during the mainshock (EMS). A power-law function gives the relationship (Productivity law) between K and EMS (Chen et al. 2019; Helmstetter 2003),

$$ K = K_{0} E_{MS}^{{\frac{2\alpha }{3}}} $$
(B.2)

where \(K_{0}\) is a constant, and \(\alpha\) is an exponent. A scaling plot (in log–log scale) can be drawn, using Eq. (B.3), by taking a combination of Eq. (B.1) and Eq. (B.2), if exponents \(\alpha\) and \(p\) are universal, and by plotting \( E_{MS}^{{ - \frac{2\alpha }{3}}} r_{AS} \) versus (\(\Delta t = t - t_{MS} ).\)

$$ E_{MS}^{{ - \frac{2\alpha }{3}}} r_{AS} = K_{0} \left( {c + \Delta t} \right)^{ - p} $$
(B.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, I., Vidya Sagar, R. Statistical analysis of acoustic emission avalanches generated during the compressive fracture process, and Mode I fracture process in cementitious composites. Int J Fract 234, 273–295 (2022). https://doi.org/10.1007/s10704-022-00618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-022-00618-2

Keywords

Navigation