Skip to main content
Log in

A physical minimum dissipative energy-based damage model for crack growth simulation of geoengineering structures

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A damage model and simulation method are developed to simulate fracture process of geoengineering structures by using the continuum damage mechanics. The main contribution of this study is that the principle of minimum dissipative energy is used to develop the damage model, in which each parameter has an explicit physics meaning. Thus the competitive crack growth process of geoengineering structures can be simulated by using the developed method, which can consider the stress redistribution during simulation within a loading step. Two numerical examples are implemented by using the developed model and method, and the predicted crack growth path matched well with the experiment results. The results supported that the developed damage model and method can be expected to be an effective numerical tool to predict failure path and evaluate structural safety of geoengineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andrade FXC, de Cesar Sá JMA, Andrade Pires FM (2011) A ductile damage nonlocal model of integral-type at finite strains: formulation and numerical issues. Int J Damage Mech 20(4):515–557

    Article  Google Scholar 

  • Azadi H, Khoei AR (2011) Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing. Int J Numer Meth Eng 85(8):1017–1048

    Article  Google Scholar 

  • Bai YL, Wei YJ, Xia MF et al (2000) Weibull modulus for diverse strength due to sample-specificity. Theoret Appl Fract Mech 34(3):211–216

    Article  Google Scholar 

  • Bai YL, Wang HY, Xia MF et al (2005) Statistical mesomechanics of solid, linking coupled multiple space and time scales. Appl Mech Rev 58(6):372–388

    Article  Google Scholar 

  • Bai QS, Tu SH, Zhang C (2016) DEM investigation of the fracture mechanism of rock disc containing hole (s) and its influence on tensile strength. Theoret Appl Fract Mech 86:197–216

    Article  Google Scholar 

  • Bazant ZP, Cedolin L (1979) Blunt crack band propagation in finite element analysis ASCE. J Eng Mech Div 105:297–315

    Article  Google Scholar 

  • Bidadi J, Akbardoost J, Aliha MRM (2019) Thickness effect on the mode III fracture resistance and fracture path of rock using ENDB specimens. Fatigue Fract Eng Mater Struct

  • Bobet A (2000) The initiation of secondary cracks in compression. Eng Fract Mech 66(2):187–219

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888

    Article  Google Scholar 

  • Cai M, Brown ET (2017) Challenges in the mining and utilization of deep mineral resources. Engineering 3(4):432–433

    Article  Google Scholar 

  • Chaboche JL (1981) Continuous damage mechanics—a tool to describe phenomena before crack initiation. Nucl Eng Des 64(2):233–247

    Article  Google Scholar 

  • Chaboche JL (1988) Continuum damage mechanics: Part I—general concepts. J Appl Mech 55(1):59–64

    Article  Google Scholar 

  • Chen G, He M, Fan F (2018) Rock burst analysis using DDA numerical simulation. Int J Geomech 18(3):04018001

    Article  Google Scholar 

  • Cheng Y, Jiao YY, Tan F (2019) Numerical and experimental study on the cracking behavior of marble with En-Echelon flaws. Rock Mech Rock Eng 52(11):4319–4338

    Article  Google Scholar 

  • Cherkaev A, Ryvkin M (2019a) Damage propagation in 2d beam lattices: 1. Uncertainty and assumptions. Arch Appl Mech 89(3):485–501

    Article  Google Scholar 

  • Cherkaev A, Ryvkin M (2019b) Damage propagation in 2d beam lattices. 2 Design of an isotropic fault-tolerant lattice. Arch Appl Mech 89(3):503–519

    Article  Google Scholar 

  • De Silva VRS, Ranjith PG, Perera MSA et al (2019) The influence of admixtures on the hydration process of soundless cracking demolition agents (SCDA) for fragmentation of saturated deep geological reservoir rock formations. Rock Mech Rock Eng 52(2):435–454

    Article  Google Scholar 

  • Do TN, Wu JH (2020) Simulating a mining-triggered rock avalanche using DDA: A case study in Nattai North, Australia. Eng Geol 264:105386

    Article  Google Scholar 

  • Eftekhari M, Baghbanan A, Hashemolhosseini H (2016) Crack propagation in rock specimen under compressive loading using extended finite element method. Arab J Geosci 9(2):145

    Article  Google Scholar 

  • Fakhimi A, Norouzi S (2019) Dilation angle in bonded particle simulation of rock. Comput Particle Mech 6(2):195–211

    Article  Google Scholar 

  • Fattahi H (2017) Applying soft computing methods to predict the uniaxial compressive strength of rocks from schmidt hammer rebound values. Comput Geosci 21(4):665–681

    Article  Google Scholar 

  • González JM, Zárate F, Oñate E (2018) Pulse fracture simulation in shale rock reservoirs: DEM and FEM–DEM approaches. Comput Particle Mech 5(3):355–373

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids philosophical transactions of the royal society of london a: mathematical. Phys Eng Sci 221:163–198

    Google Scholar 

  • Gu XB, Wu QH, Zhu YH (2019) The experimental investigation on the propagation process of crack for brittle rock similar material. Geotech Geol Eng 37(6):4731–4740

    Article  Google Scholar 

  • Haeri H, Shahriar K, FatehiMarji M et al (2014) On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading. Latin Am J Solids Struct 11(8):1400–1416

    Article  Google Scholar 

  • Heider Y, Markert B (2017) A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech Res Commun 80:38–46

    Article  Google Scholar 

  • Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–781

    Article  Google Scholar 

  • Huang YH, Yang SQ, Tian WL (2019) Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures. Theoret Appl Fract Mech 99:118–130

    Article  Google Scholar 

  • Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 1957(24):361–364

    Article  Google Scholar 

  • Kachanov LM (1958) Time of the rupture process under creep conditions, Izy Akad. Nank SSR Otd Tech Nauk 8:26–31

    Google Scholar 

  • Khandelwal M, Ranjith PG (2017) Study of crack propagation in concrete under multiple loading rates by acoustic emission. Geomech Geophys Geo-Energy Geo-Resour 3(4):393–404

    Article  Google Scholar 

  • Lee J, Hong JW (2019) Morphological aspects of crack growth in rock materials with various flaws. Int J Numer Anal Methods Geomech 43(10):1854–1866

    Article  Google Scholar 

  • Lemaitre J (1996) A course on damage mechanics. Springer, Berlin

    Book  Google Scholar 

  • Li G, Tang CA, Liang ZZ (2017) Development of a parallel FE simulator for modeling the whole trans-scale failure process of rock from meso- to engineering-scale. Comput Geosci 98:73–86

    Article  Google Scholar 

  • Li M, Han S, Zhou S et al (2018) An improved computing method for 3D mechanical connectivity rates based on a polyhedral simulation model of discrete fracture network in rock masses. Rock Mech Rock Eng 51(6):1789–1800

    Article  Google Scholar 

  • Li Q, Zhao GF, Lian J (2019a) Further development of the distinct lattice spring model for quasi-brittle crack propagation in concrete and its application in underground engineering. Tunn Undergr Space Technol 92:103061

    Article  Google Scholar 

  • Li G, Cheng XF, Pu H et al (2019b) Damage smear method for rock failure process analysis. J Rock Mech Geotech Eng 11(6):1151–1165

    Article  Google Scholar 

  • Li X, Gao W, Liu W (2019c) A mesh objective continuum damage model for quasi-brittle crack modelling and finite element implementation. Int J Damage Mech 1056789518823876

  • Lian JJ, Li Q, Deng XF et al (2018) A numerical study on toppling failure of a jointed rock slope by using the distinct lattice spring model. Rock Mech Rock Eng 51(2):513–530

    Article  Google Scholar 

  • Liu Q, Xu J, Liu X et al (2015) The role of flaws on crack growth in rock-like material assessed by AE technique. Int J Fract 193(2):99–115

    Article  CAS  Google Scholar 

  • Liu L, Ji H, Elsworth D et al (2020) Dual-damage constitutive model to define thermal damage in rock. Int J Rock Mech Min Sci 126:104185

    Article  Google Scholar 

  • Ma L, Yari N, Wiercigroch M (2018) Shear stress triggering brittle shear fracturing of rock-like materials. Int J Mech Sci 146:295–302

    Article  Google Scholar 

  • Markov A, Kanaun S (2014) An efficient homogenization method for elastic media with multiple cracks. Int J Eng Sci 82:205–221

    Article  Google Scholar 

  • Martowicz A (2017) Peridynamics for damage modelling and propagation via numerical simulations. Diagnostyka 18(1):73–78

    Google Scholar 

  • Norat RCC, da Costa ML (2019) Characterization, usage and provenance of building rocks in the Fortress of São José of Macapá (Amazon, Brazil). Eng Geol 253:214–228

    Article  Google Scholar 

  • Ofoegbu GI, Smart KJ (2019) Modeling discrete fractures in continuum analysis and insights for fracture propagation and mechanical behavior of fractured rock. Results Eng 4:100070

    Article  Google Scholar 

  • Peerlings RHJ, de Borst R, Brekelmans WAM et al (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39(19):3391–3403

    Article  Google Scholar 

  • Pezeshki M, Loehnert S, Wriggers P et al (2018) 3D dynamic crack propagation by the extended finite element method and a gradient-enhanced damage model[M]//Multiscale modeling of heterogeneous structures. Springer, Cham, pp 277–299

    Google Scholar 

  • Rabczuk T, Ren H (2017) A peridynamics formulation for quasi-static fracture and contact in rock. Eng Geol 225:42–48

    Article  Google Scholar 

  • Ramsey JM, Chester FM (2004) Hybrid fracture and the transition from extension fracture to shear fracture. Nature 428(6978):63

    Article  CAS  Google Scholar 

  • Ray P (2018) Statistical physics perspective of fracture in brittle and quasi-brittle materials. Philos Trans R Soc A 377(2136):20170396

    Article  CAS  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  • Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci 39(2):229–241

    Article  Google Scholar 

  • Shi T, Leung CKY (2017) Minimum energy based method to predict the multiple cracking pattern in quasi-brittle beam. Int J Solids Struct 117:1–13

    Article  Google Scholar 

  • Sun B (2018) A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue. J Constr Steel Res 146:76–83

    Article  Google Scholar 

  • Sun B (2020) A computational method for two/three dimensional competitive fracture process simulation of rock-like materials due to cracking. Arab J Geosci 13:1031

    Article  Google Scholar 

  • Sun B, Li Z (2016a) Adaptive mesh refinement FEM for seismic damage evolution in concrete-based structures. Eng Struct 115:155–164

    Article  Google Scholar 

  • Sun B, Li Z (2016b) Adaptive concurrent three-level multiscale simulation for trans-scale process from material mesodamage to structural failure of concrete structures. Int J Damage Mech 25(5):750–769

    Article  CAS  Google Scholar 

  • Sun B, Xu ZD (2020) A minimum Lemaitre’s damage strain energy release rate-based model for competitive fracture process simulation of quasi-brittle materials. Theoret Appl Fract Mech 109:102705

    Article  Google Scholar 

  • Sun B, Wang X, Li Z (2015) Meso-scale image-based modeling of reinforced concrete and adaptive multi-scale analyses on damage evolution in concrete structures. Comput Mater Sci 110:39–53

    Article  Google Scholar 

  • Sun B, Huang X, Zheng Y et al (2020) Multi-scale lattice method for mesoscopic crack growth simulation of concrete structures. Theoret Appl Fract Mech 106:102475

    Article  Google Scholar 

  • Tunsakul J, Jongpradist P, Kim HM et al (2018) Evaluation of rock fracture patterns based on the element-free Galerkin method for stability assessment of a highly pressurized gas storage cavern. Acta Geotech 13(4):817–832

    Article  Google Scholar 

  • Wang Y, Zhou X, Xu X (2016) Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics. Eng Fract Mech 163:248–273

    Article  Google Scholar 

  • Wang Y, Bui HH, Nguyen GD et al (2019a) A new SPH-based continuum framework with an embedded fracture process zone for modelling rock fracture. Int J Solids Struct 159:40–57

    Article  Google Scholar 

  • Wang Y, Han F, Lubineau G (2019b) A hybrid local/nonlocal continuum mechanics modeling and simulation of fracture in brittle materials. Comput Model Eng Sci 121(2):99–423

    Google Scholar 

  • Wen T, Tang H, Huang L et al (2020) Energy evolution: A new perspective on the failure mechanism of purplish-red mudstones from the Three Gorges Reservoir area, China. Eng Geol 264:105350

    Article  Google Scholar 

  • Wowk D, Alousis L, Underhill PR (2019) An adaptive remeshing technique for predicting the growth of irregular crack fronts using p-version finite element analysis. Eng Fract Mech 207:36–47

    Article  Google Scholar 

  • Xu J, Li Z (2019) Crack propagation and coalescence of step-path failure in rocks. Rock Mech Rock Eng 52(4):965–979

    Article  Google Scholar 

  • Xu J, Zheng Z, Xiao X et al (2018) Crack propagation and coalescence due to dual non-penetrating surface flaws and their effect on the strength of rock-like material. J Geophys Eng 15(3):938–951

    Article  Google Scholar 

  • Yang L, Jiang Y, Li B et al (2012) Application of the expanded distinct element method for the study of crack growth in rock-like materials under uniaxial compression. Front Struct Civ Eng 6(2):121–131

    Google Scholar 

  • Yun K, Wang Z, Chang M et al (2019) A computational methodology for simulating quasi-brittle fracture problems. Comput Struct 215:65–79

    Article  Google Scholar 

  • Zhang X, Bui TQ (2015) A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures. Eng Comput 32(2):473–497

    Article  Google Scholar 

  • Zhang XP, Wong LNY (2013) Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech Rock Eng 46(5):1001–1021

    Article  Google Scholar 

  • Zhang X, Zhang Q, Wu S (2017) Acoustic emission characteristics of the rock-like material containing a single flaw under different compressive loading rates. Comput Geotech 83:83–97

    Article  Google Scholar 

  • Zhou H, Liu D, Lei G et al (2018a) The creep-damage model of salt rock based on fractional derivative. Energies 11(9):2349

    Article  Google Scholar 

  • Zhou C, Xu C, Karakus M et al (2018b) A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model. Geomech Eng 16(5):471–482

    Google Scholar 

  • Zhou S, Zhuang X, Rabczuk T (2018c) A phase-field modeling approach of fracture propagation in poroelastic media. Eng Geol 240:189–203

    Article  Google Scholar 

  • Zhou G, Xu T, Heap MJ et al (2020) A three-dimensional numerical meso-approach to modeling time-independent deformation and fracturing of brittle rocks. Comput Geotech 117:103274

    Article  Google Scholar 

  • Zhu WC, Wei J, Zhao J et al (2014) 2D numerical simulation on excavation damaged zone induced by dynamic stress redistribution. Tunn Undergr Space Technol 43:315–326

    Article  Google Scholar 

Download references

Acknowledgements

The works described in this paper are financially supported by National Natural Science Foundation of China (Grant no. 52008104), Program of Chang Jiang Scholars of Ministry of Education and the National Science Found for Distinguished Young Scholars of China (Grant No. 51625803). The authors are very grateful to the reviewers and editor for their constructive comments and suggestions, which helped the authors to improve their paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Dong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Xu, ZD. A physical minimum dissipative energy-based damage model for crack growth simulation of geoengineering structures. Int J Fract 231, 79–94 (2021). https://doi.org/10.1007/s10704-021-00565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-021-00565-4

Keywords

Navigation