Skip to main content

Advertisement

Log in

Influence of fracture roughness and micro-fracturing on the mechanical response of rock joints: a discrete element approach

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The closure and shear behaviors of 3D self-affine rock joints are simulated by the Discrete Element Method using PFC3D. First, a methodology to produce rough self-affine rock joints using DEM is presented then eight self-affine rough joints, having low and high values of roughness exponent, self-affine correlation length, and height variance, are considered. After the calibration of the elastic and fracture behaviors of an elementary volume formed from spherical discrete elements bonded by elastic beams, the numerical rock joints are submitted to closure tests at 14 and 21 MPa followed by a shear test at constant velocity and under constant normal load. Each DEM joint is tested using three different mechanical models: rigid, ideally elastic and elastic-fracturing. The use of these three models allows highlighting the distinct influences of the morphology, the joint stiffness and the micro-fracturing on the closure and shear behaviors of the joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • André D, Iordanoff I, Charles LC, Néauport J (2012) Discrete element method to simulate continuous material by using the cohesive beam model. Comput Methods Appl Mech Eng 213–216:113–125

    Article  Google Scholar 

  • Archambault G, Gentier S, Riss J, Flamand R (1997) The evolution of void spaces (permeability) in relation with rock joint shear behavior. Int J Rock Mech Min Sci 34:3–4

    Article  Google Scholar 

  • Babadagli T, Develi K (2003) Fractal characteristics of rocks fractured under tension. Theor Appl Fract Mech 39:73–88

    Article  Google Scholar 

  • Bahaaddini M, Sharrock G, Hebblewhite BK (2013) Numerical direct shear tests to model the shear behavior of rock joints. Comput Geotech 51:101–115

    Article  Google Scholar 

  • Bandis S, Lumsden AC, Barton NR (1981) Experimental studies of scale effects on the shear behavior of rock joints. Int J Rock Mech Min Sci 18:1–21

    Article  Google Scholar 

  • Barton N (1982) Modelling rock joint behavior from in situ block tests: implications for nuclear waste repository design. Technical Report ONWI-308. Terra Teck, Inc. for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, OH

  • Barton N, Bandis S (1990) Review of predictive capabilities of JRC-JCS model in engineering practice. In: International symposium on rock joints, Loen, 4-6 Juin, pp 603–610

  • Barton NR, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22:121–40

    Article  Google Scholar 

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54

    Article  Google Scholar 

  • Belem T, Homand-Etienne F, Souley M (1997) Fractal analysis of shear joint roughness. Int J Rock Mech Min Sci 34:3–4

    Article  Google Scholar 

  • Bouchaud E (1997) Scaling properties of cracks. J Phys Condens Matter 9:4319–4344

    Article  CAS  Google Scholar 

  • Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res 91:4939–4948

    Article  Google Scholar 

  • Byerlee JD (1978) Friction of rocks. Pageoph 116:615–626

    Article  Google Scholar 

  • Candela T, Renard F, Bochon M, Brouste A, Marsan D, Schmittbuhl J, Voisin C (2009) Characterization of fault roughness at various scales: implications of three-dimensional high-resolution topography measurements. Pure Appl Geophys 166:1817–1851

    Article  Google Scholar 

  • Cho N, Martin CD, Sego DC (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44:997–1010

    Article  Google Scholar 

  • Cho N, Martin CD, Sego DC (2008) Development of a shear zone in brittle rock subjected to direct shear. Int J Rock Mech Min Sci 45:1335–1346

    Article  Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  • Develi K, Babadagli T (1998) Quantification of natural fracture surfaces using fractal geometry. Math Geol 30:971–998

    Article  Google Scholar 

  • Dieterich JH, Kilgore BD (1996) Imaging surface contacts: power-law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256:219–239

    Article  Google Scholar 

  • Duriez J, Darve F, Donzé FV (2011) A discrete modeling-based constitutive relation for infilled rock joints. Int J Rock Mech Min Sci 48:458–468

    Article  Google Scholar 

  • Flamand R. (2000) Validation d’un modèle de comportement mécanique pour les fractures rocheuses en cisaillement. PhD Thesis, Université du Québec à Chicoutimi

  • Gentier S (1986) Morphologie et comportement hydromécanique d’une fracture naturelle dans le granite sous contrainte normale–etude expérimentale et théorique. PhD Thesis, Université d’Orléans

  • Gentier S, Riss J, Archambault G, Flamand R, Hopkins D (2000) Influence of fracture geometry on shear behavior. Int J Rock Mech Min Sci 37:161–174

    Article  Google Scholar 

  • Hinojosa M, Reyes E, Guerra C, González V, Ortiz U (2008) Scaling properties of slow fracture in glass: from deterministic to irregular topography. Int J Fract 151:81–93

    Article  Google Scholar 

  • Itasca (2008) User manual, PFC3D version 4.0

  • Karami A, Stead D (2008) Asperity degradation and damage in the direct shear test: a hybrid FEM–DEM approach. Rock Mech Rock Eng 41:229–266

    Article  Google Scholar 

  • Kwasniewski MA, Wang JA (1997) Surface roughness evolution and mechanical behavior of rock joints under shear. Int J Rock Mech Min Sci 34:3–4

    Article  Google Scholar 

  • Lopez JM, Schmittbuhl J (1998) Anomalous scaling of fracture surfaces. Phys Rev E 57:6405–6409

    Article  CAS  Google Scholar 

  • Maksimovic M (1996) The shear strength components of a rough rock joint. Int J Rock Mech Min Sci Geomech Abstr 33:769–783

    Article  Google Scholar 

  • Marache A. (2002) Comportement mécanique d’une fracture rocheuse sous contraintes normale et tangentielle. École Centrales des Arts et Manufactures. PhD Thesis, École Centrale Paris

  • Moon T, Nakagawa M, Berger J (2007) Measurement of fracture toughness using the distinct element method. Int J Rock Mech Min Sci 44:449–456

    Article  Google Scholar 

  • Morel S, Bonamy D, Ponson L, Bouchaud E (2008) Transient damage spreading and anomalous scaling in mortar crack surfaces. Phys Rev E 78:1–5

    Article  Google Scholar 

  • Mourot G, Morel S, Bouchaud E, Valentin G (2005) Anomalous scaling of mortar fracture surfaces. Phys Rev E 71:6405–6408

    Article  Google Scholar 

  • Mourot G, Morel S, Bouchaud E, Valentin G (2006) Scaling properties of mortar fracture surfaces. Int J Fract 140:39–54

    Article  Google Scholar 

  • Murata S, Saito T (1999) The variogram method for a fractal model of a rock joint surface. Geotech Geol Eng 17:197–210

    Article  Google Scholar 

  • Odling NE (1994) Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mech Rock Eng 27:135–153

    Article  Google Scholar 

  • Ogilvy JA (1991) Numerical simulation of friction between contacting rough surfaces. J Phys D Appl Phys 24:2098–2109

    Article  CAS  Google Scholar 

  • Park JW, Lee JK, Song JJ, Choi BH (2012) A constitutive model for the shear behavior of rock joints based on three-dimensional quantification of joint roughness. Rock Mech Rock Eng 46:1513–1537

    Article  Google Scholar 

  • Park JW, Song JJ (2009) Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int J Rock Mech Min Sci 46:1315–1328

    Article  Google Scholar 

  • Park JW, Song JJ (2013) Numerical method for the determination of contact areas of a rock joint under normal and shear loads. Int J Rock Mech Min Sci 58:8–22

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364

    Article  Google Scholar 

  • Power WL, Durham WB (1997) Topography of natural and artificial fractures in granitic rocks: implications for studies of rock friction and fluid migration. Int J Rock Mech Min Sci 34:979–989

    Article  Google Scholar 

  • Riss J, Gentier S, Archambault G, Flamand R (1997) Sheared rock joints: dependence of damage zones on morphological anisotropy. Int J Rock Mech Min Sci 34:3–4

    Article  Google Scholar 

  • Riss J, Gentier S, Laffréchine K, Flamand R, Archambault G (1996) Binary images of sheared rock joints: characterization of damaged zones. Microsc Microanal Microstruct 7:521–526

    Article  Google Scholar 

  • Renard F, Schmittbuhl J, Gratier JP, Meakin P, Merino E (2004) Three-dimensional roughness of stylolites in limestones. J Geophys Res 109:1–12

    Article  Google Scholar 

  • Renard F, Voisin C, Marsan D, Schmittbuhl J (2006) High-resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales. Geophys Res Lett 33:1–4

    Google Scholar 

  • Santucci S, Maloy KJ, Delaplace A (2007) Statistics of fracture surfaces. Phys Rev E 75:1–6

    Article  Google Scholar 

  • Schmittbuhl J, Schmitt F, Scholz C (1995) Scaling invariance of crack surfaces. J Geophys Res 100:5953–5973

    Article  Google Scholar 

  • Scholtès L, Donzé F-V (2012) Modeling progressive failure in fractured rock masses using a 3D discrete element method. Int J Rock Mech Min Sci 52:18–30

    Article  Google Scholar 

  • Schopfeer MPJ, Abe S, Childs C, Walsh JJ (2009) The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from DEM Modelling. Int J Rock Mech Min Sci 46:250–261

    Article  Google Scholar 

  • Shimizu H, Koyama T (2010) Distinct element analysis for class II behavior of rocks under uniaxial compression. Int J Rock Mech Min Sci 47:323–333

    Article  Google Scholar 

  • Varela-Valdez A. (2015) Mechanical behavior of rock joints: influence of joint roughness on its closure and shear behavior. Ph.D. Thesis, Université de Bordeaux-France and Universidad Autonoma de Nuevo Leon-Mexico

  • Wang Y, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min Sci 46:1124–1135

    Article  Google Scholar 

  • Wang Y, Tonon F (2010) Discrete element modeling of rock fragmentation upon impact in rockfall analysis. Rock Mech Rock Eng 44:23–35

    Article  Google Scholar 

  • Wang Y, Tonon F (2011) Dynamic validation of a discrete element code in modeling rock fragmentation. Int J Rock Mech Min Sci 48:535–545

    Article  Google Scholar 

  • Wanne TS, Young RP (2008) Bonded-particle modeling of thermally fractured granite. Int J Rock Mech Min Sci 45:789–799

    Article  Google Scholar 

  • Weng MC, Li HH (2012) Relationship between the deformation characteristics and microscopic properties of sandstone explored by the bonded-particle model. Int J Rock Mech Min Sci 56:34–43

    Article  Google Scholar 

  • Xie H, Wang JA, Xie WH (1997) Fractal effects of surface roughness on the mechanical behavior of rock joints. Chaos Solitons Fractals 8:221–252

    Article  Google Scholar 

  • Yang ZY, Taghichian A, Huang GD (2011) On the applicability of self-affinity concept in scale of three-dimensional rock joints. Int J Rock Mech Min Sci 48:1173–1187

    Article  Google Scholar 

  • Yang ZY, Taghichian A, Li WC (2010) Effect of asperity order on the shear response of three-dimensional joints by focusing on damage area. Int J Rock Mech Min Sci 47:1012–1026

    Article  Google Scholar 

  • Yoon JS (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889

    Article  Google Scholar 

  • Yoon JS, Zang A, Steohansson O (2012) Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model. Int J Rock Mech Min Sci 49:68–83

    Article  Google Scholar 

  • Zhang XP, Wong L (2012) Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech Rock Eng 45:711–737

    Google Scholar 

  • Zhang Q, Zhu H, Zhang L, Ding X (2011) Study of scale effect on intact rock strength using particle flow modeling. Int J Rock Mech Min Sci 48:1320–1328

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to CONACYT (Mexico) and Le Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche (France) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moisés Hinojosa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varela Valdez, A., Morel, S., Marache, A. et al. Influence of fracture roughness and micro-fracturing on the mechanical response of rock joints: a discrete element approach. Int J Fract 213, 87–105 (2018). https://doi.org/10.1007/s10704-018-0308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-018-0308-5

Keywords

Navigation