Skip to main content
Log in

Error controlled adaptive multiscale XFEM simulation of cracks

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The accurate and efficient prediction of the interaction of microcracks with macrocracks has been a challenge for many years. In this paper a discretization error controlled adaptive multiscale technique for the accurate simulation of microstructural effects within a macroscopic component is presented. The simulation of cracks is achieved using the corrected XFEM. The error estimation procedure is based on the well known Zienkiewicz and Zhu method extended to the XFEM for cracks such that physically meaningful stress irregularities and non-smoothnesses are accurately reflected. The incorporation of microstructural features such as microcracks is achieved by means of the multiscale projection method. In this context an error controlled adaptive mesh refinement is performed on the fine scale where microstructural effects may lead to highly complex mechanical behavior. The presented method is applied to a few examples showing its validity and applicability to arbitrary problems within fracture mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620

    Article  Google Scholar 

  • Bordas S, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196: 3381–3399

    Article  Google Scholar 

  • Bordas S, Duflot M, Le P (2008) A simple error estimator for extended finite elements. Commun Numer Methods Eng 24(11): 961–971

    Article  Google Scholar 

  • Duflot M, Bordas S (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76(8): 1123–1138

    Article  Google Scholar 

  • Fries T (2008) A corrected xfem approximation without problems in blending elements. Int J Numer Methods Eng 75: 503–532

    Article  Google Scholar 

  • Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84: 253–304

    Google Scholar 

  • Fries T, Byfut A, Alizada A, Chang K, Schröder A (2011) Hanging nodes and xfem. Int J Numer Methods Eng 86: 404–430

    Article  Google Scholar 

  • Gerasimov T, Rüter M, Stein E (2012) An explicit residual-type error estimator for q 1-quadrilateral xfem in 2d lefm. Int J Numer Methods Eng 90: 1118–1155

    Article  Google Scholar 

  • Gerstenberger A, Wall WA (2008) An eXtended finite element method/Lagrange multiplier based approach for fluid—structure interaction. Comput Methods Appl Mech Eng 197: 1699–1714

    Article  Google Scholar 

  • Guidault PA, Allix O, Champaney L, Cornuault C (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197: 381–399

    Article  Google Scholar 

  • Jayaswal K, Grosse IR (1993) Finite element error estimation for crack tip singular elements. Finite Elem Anal Des 14: 17–35

    Article  Google Scholar 

  • Kim D, Pereira J, Duarte C (2010) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshes. Int J Numer Methods Eng 81: 335–365

    Google Scholar 

  • Legay A, Chessa J, Belytschko T (2006) An Eulerian–Lagrangian method for fluid—structure interaction based on level sets. Comput Methods Appl Mech Eng 195: 2070–2087

    Article  Google Scholar 

  • Loehnert S, Belytschko T (2007a) Crack shielding and amplification due to multiple microcracks interacting with a macrocrack. Int J Fract 145: 1–8

    Article  Google Scholar 

  • Loehnert S, Belytschko T (2007b) A multiscale projection method for macro/mircocrack simulations. Int J Numer Methods Eng 71: 1466–1482

    Article  Google Scholar 

  • Loehnert S, Mueller-Hoeppe D (2008) Multiscale methods for fracturing solids. In: Reddy B (ed) IUTAM symposium on theoretical, computational and modelling aspects of inelastic media, IUTAM bookseries. Springer, Berlin, pp 79–87

    Chapter  Google Scholar 

  • Loehnert S, Mueller-Hoeppe D, Wriggers P (2011) 3D corrected XFEM approach and extension to finite deformation theory. Int J Numer Methods Eng 86: 431–452

    Article  Google Scholar 

  • Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  Google Scholar 

  • Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with xfem. Int J Numer Methods Eng 81: 671–700

    Google Scholar 

  • Pereira J, Kim D, Duarte C (2012) A two-scale approach for the analysis of propagating three-dimensional fracture. Comput Mech 49: 99–121

    Article  Google Scholar 

  • Prange C, Loehnert S, Wriggers P (2012) Error estimation for crack simulations using the xfem. Int J Numer Methods Eng. doi:10.1002/nme.4331

  • Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular + smooth stress field splitting. Int J Numer Methods Eng 76: 545–571

    Article  Google Scholar 

  • Rose LRF (1986) Microcrack interaction with a main crack. Int J Fract 31: 233–242

    Article  CAS  Google Scholar 

  • Rubinstein AA (1986) Macrocrack-microdefect interaction. J Appl Mech 53: 505–510

    Article  Google Scholar 

  • Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51: 943–960

    Article  Google Scholar 

  • Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190: 4081–4193

    Article  Google Scholar 

  • Strouboulis T, Zhang L, Wang D, Babuška I (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195: 852–879

    Article  Google Scholar 

  • Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190: 6183–6200

    Article  Google Scholar 

  • Tamuzs VP, Petrova VE (2002) On macrocrack-microdefect interaction. Int Appl Mech 38: 1157–1177

    Article  Google Scholar 

  • Wu CC, Rice RW, Becher PF (1981) The character of cracks in fracture toughness measurements of ceramics. Fract Mech Methods Ceram Rocks Concr ASTM STP 745: 127–140

    Article  CAS  Google Scholar 

  • Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24: 337–357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Loehnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loehnert, S., Prange, C. & Wriggers, P. Error controlled adaptive multiscale XFEM simulation of cracks. Int J Fract 178, 147–156 (2012). https://doi.org/10.1007/s10704-012-9777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9777-0

Keywords

Navigation