Skip to main content
Log in

Void coalescence in a porous solid under dynamic loading conditions

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Void coalescence in ductile voided solids subjected to dynamic loading is investigated numerically. Finite element simulations of an axisymmetric unit cell, taking inertia and finite strain effects into account, are used to describe the coalescence process in a porous material containing a periodic distribution of initially spherical voids. The numerical results suggest that inertia yields a stabilizing effect and slows down the necking of the ligaments between neighbouring voids. Besides, for sufficiently high stress triaxiality and loading rate, coalescence is found to occur by direct impingement, instead of ligament necking. This result correlates with experimental observations in spall fracture and dynamic crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benzerga AA (2002) Micromechanics of coalescence in ductile fracture. J Mech Phys Solids 50: 1331–1362

    Article  Google Scholar 

  • Benzerga AA, Besson J, Batisse R, Pineau A (2002) Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain. Mod Simul Mater Sci Eng 10: 73–102

    Article  Google Scholar 

  • Benzerga AA, Leblond J-B (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44: 169–305

    Article  Google Scholar 

  • Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19: 3–52

    Article  CAS  Google Scholar 

  • Cox TB, Low JR (1974) An investigation of the plastic fracture of AISI 4340 and 18 nickel-200 grade maraging steels. Metall Trans A 5: 1457–1470

    Article  CAS  Google Scholar 

  • Curran DR, Seaman L, Shockey DA (1987) Dynamic failure of solids. Phys Rep 147: 253–388

    Article  CAS  Google Scholar 

  • Czarnota C, Jacques N, Mercier S, Molinari A (2008) Modelling of dynamic fracture and application to the simulation of plate impact tests on tantalum. J Mech Phys Solids 56: 1624–1650

    Article  CAS  Google Scholar 

  • Dornowski W, Perzyna P (2006) Numerical analysis of localized fracture phenomena in inelastic solids. Found Civ Environ Eng 7: 79–116

    Google Scholar 

  • Fabrègue D, Pardoen T (2008) A constitutive model for elastoplastic solids containing primary and secondary voids. J Mech Phys Solids 56: 719–741

    Article  Google Scholar 

  • Flandi L, Leblond J-B (2005) Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids. C R Mecanique 333: 542–549

    CAS  Google Scholar 

  • Gao X, Kim J (2006) Modelling of ductile fracture: significance of void coalescence. Int J Solids Struct 43: 6277–6293

    Article  Google Scholar 

  • Gologanu M, Leblond J-B, Perrin G, Devaux J (2001) Theoretical models for void coalescence in porous ductile solids. I. Coalescence “in layers”. Int J Solids Struct 38: 5581–5594

    Article  Google Scholar 

  • Gray GT III, Bourne NK, Vecchio KS, Millett JCF (2010) Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel. Int J Fract 163: 243–258

    Article  CAS  Google Scholar 

  • Han J-B, Tvergaard V (1995) Effect of inertia on the necking behavior of ring specimens under rapid radial expansion. Eur J Mech A/Solids 14: 287–307

    Google Scholar 

  • Huang Y, Hutchinson JW, Tvergaard V (1991) Cavitation instabilities in elastic–plastic solids. J Mech Phys Solids 39: 223–241

    Article  Google Scholar 

  • Jacques N, Czarnota C, Mercier S, Molinari A (2010) A micromechanical constitutive model for dynamic damage and fracture of ductile materials. Int J Fract 162: 159–175

    Article  Google Scholar 

  • Jacques N, Mercier S, Molinari A (2012a) Multiscale modelling of voided ductile solids with micro-inertia and application to dynamic crack propagation. Procedia IUTAM (to appear)

  • Jacques N, Mercier S, Molinari A (2012b) Effects of microscale inertia on dynamic ductile crack growth. J Mech Phys Solids. doi:10.1016/j.jmps.2011.12.010

  • Keralavarma SM, Hoelscher S, Benzerga AA (2011) Void growth and coalescence in anisotropic plastic solids. Int J Solids Struct 48: 1696–1710

    Article  Google Scholar 

  • Klocker H, Tvergaard V (2000) Void growth and coalescence in metals deformed at elevated temperature. Int J Fract 106: 259–276

    Article  CAS  Google Scholar 

  • Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24: 835–853

    Article  Google Scholar 

  • Leblond J-B, Mottet G (2008) A theoretical approach of strain localization within thin planar bands in porous ductile materials. C R Mecanique 336: 176–189

    CAS  Google Scholar 

  • Llorca F, Roy G (2003) Metallurgical investigation of dynamic damage in tantalum. In: 13th APS topical conference on shock compression of condensed matter, APS, Portland

  • Molinari A, Mercier S (2001) Micromechanical modelling of porous materials under dynamic loading. J Mech Phys Solids 49: 1497–1516

    Article  Google Scholar 

  • Needleman A, Tvergaard V (1991) An analysis of dynamic, ductile crack growth in a double edge cracked specimen. Int J Fract 49: 41–67

    Article  Google Scholar 

  • Ortiz M, Molinari A (1992) Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material. J Appl Mech 59: 48–53

    Article  Google Scholar 

  • Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48: 2467–2512

    Article  Google Scholar 

  • Rajendran AM, Dietenberger MA, Grove DJ (1988) A void growth-based failure model to describe spallation. J Appl Phys 85: 1521–1527

    Google Scholar 

  • Roy G (2003) Vers une modélisation approfondie de l’endommagement ductile dynamique. Investigation expérimentale d’une nuance de tantale et développements théoriques. PhD Thesis, ENSMA, University of Poitiers (in French)

  • Scheyvaerts F, Onck PR, Tekoglu C, Pardoen T (2011) The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. J Mech Phys Solids 59: 373–397

    Article  CAS  Google Scholar 

  • Seaman L, Curran DR, Shockey DA (1976) Computational models for ductile and brittle fracture. J Appl Phys 47: 4814–4826

    Article  CAS  Google Scholar 

  • Thomason PF (1968) A theory for ductile fracture by internal necking of cavities. J Inst Metals 96: 360–365

    Google Scholar 

  • Thomason PF (1998) A view on ductile-fracture modelling. Fatig Fract Eng Mater Struct 21: 1105–1122

    Article  CAS  Google Scholar 

  • Thomason PF (1999) Ductile spallation fracture and the mechanics of void growth and coalescence under shock-loading conditions. Acta Mater 47: 3633–3646

    Article  CAS  Google Scholar 

  • Tong W, Ravichandran G (1995) Inertia effects on void growth in porous viscoplastic materials. J Appl Mech 62: 633–639

    Article  Google Scholar 

  • Trumel H, Hild F, Roy G, Pellegrini Y-P, Denoual C (2009) On probabilistic aspects in the dynamic degradation of ductile materials. J Mech Phys Solids 57: 1980–1998

    Article  CAS  Google Scholar 

  • Tugcu P, Neale KW, Lahoud AE (1990) Inertial effects on necking in tension. Int J Solids Struct 26: 1275–1285

    Article  Google Scholar 

  • Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18: 237–252

    Google Scholar 

  • Tvergaard V (2009) Behaviour of voids in a shear field. Int J Fract 158: 41–49

    Article  Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of the cup–cone fracture in a round tensile bar. Acta Metall 32: 157–169

    Article  Google Scholar 

  • Tvergaard V, Vadillo G (2007) Influence of porosity on cavitation instability predictions for elastic–plastic solids. Int J Mech Sci 49: 210–216

    Article  Google Scholar 

  • Tvergaard V, Huang Y, Hutchinson JW (1992) Cavitation instabilities in a power hardening elastic–plastic solid. Eur J Mech A/Solids 11: 215–231

    Google Scholar 

  • Venkert A, Guduru PR, Ravichandran G (2001) Effect of loading rate on fracture morphology in a high strength ductile steel. J Eng Mater Tech 123: 261–267

    Article  CAS  Google Scholar 

  • Wright TW, Ramesh KT (2008) Dynamic void nucleation and growth in solids: a self-consistent statistical theory. J Mech Phys Solids 56: 336–359

    Article  CAS  Google Scholar 

  • Wu XY, Ramesh KT, Wright TW (2003) The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J Mech Phys Solid 51: 1–26

    Article  Google Scholar 

  • Wu XY, Ramesh KT, Wright TW (2003) The effects of thermal softening and heat conduction on the dynamic growth of voids. Int J Solids Struct 40: 4461–4478

    Article  Google Scholar 

  • Xu Y, Zhang J, Bai Y, Meyers MA (2008) Shear localization in dynamic deformation: microstructural evolution. Metall Mater Trans 39: 811–843

    Article  Google Scholar 

  • Xue Z, Vaziri A, Hutchinson JW (2008) Material aspects of dynamic neck retardation. J Mech Phys Solids 56: 93–113

    Article  Google Scholar 

  • Yerra SK, Tekoglu C, Scheyvaerts F, Delannay L, Van Houtte P, Pardoen T (2010) Void growth and coalescence in single crystals. Int J Solids Struct 47: 1016–1029

    Article  Google Scholar 

  • Zhang X, Liu Q, Mai Y-W (2006) Numerical study on void growth in rate and temperature dependent solids. Int J Fract 142: 119–136

    Article  Google Scholar 

  • Zurek AK, Thissell WR, Tonks DL, Hixson R, Addessio F (1997) Quantification of damage evolution for a micromechanical model of ductile fracture in spallation of tantalum. J Phys IV 7(C3): 903–908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jacques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacques, N., Mercier, S. & Molinari, A. Void coalescence in a porous solid under dynamic loading conditions. Int J Fract 173, 203–213 (2012). https://doi.org/10.1007/s10704-012-9683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9683-5

Keywords

Navigation