Skip to main content
Log in

Dislocation plasticity and phase transformations in Si-SiC core-shell nanotowers

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Vapor-liquid-solid (VLS) Si nanotowers were coated with nanocrystalline SiC to form a Si-SiC core-shell composite. Due to a mismatch in the coefficients of thermal expansion (CTE), the Si core was under a compressive stress following the deposition. The composite tower was then cross-sectioned using focused ion beam milling, exposing the Si core. Indentation into the Si showed an increased toughness as a function of diameter compared to similar sized Si nanotowers and nanospheres. This result is explained through enhanced dislocation and phase transformation plasticity in the Si core from the CTE compressive stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J Am Ceram Soc 64(9): 533–538

    Article  CAS  Google Scholar 

  • Beaber AR, Nowak JD, Ugurlu O, Mook WM, Girshick SL, Ballarini R, Gerberich WW (2010) Smaller is tougher. Philos Mag A. doi:10.1080/14786435.2010.487474

  • Beaber AR, Qi LJ, Hafiz J, McMurry PH, Heberlein JVR, Gerberich WW, Girshick SL (2007) Nanostructured SiC by chemical vapor deposition and nanoparticle impaction. Surf Coat Technol 202(4–7): 871–875

    Article  CAS  Google Scholar 

  • Bradby JE, Williams JS, Swain MV (2003) In situ electrical characterization of phase transformations in Si during indentation. Phys Rev B 67(8): 9

    Article  Google Scholar 

  • Callahan DL, Morris JC (1992) The extent of phase-transformation in silicon hardness indentations. J Mater Res 7(7): 1614–1617

    Article  CAS  Google Scholar 

  • Domnich V, Gogotsi Y, Dub S (2000) Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl Phys Lett 76(16): 2214–2216

    Article  CAS  Google Scholar 

  • Eshelby JD, Frank FC, Wills HH, Nabarro FRN (1951) Equilibrium of linear arrays of dislocations. Philos Mag A 42(327): 351–364

    Google Scholar 

  • Gerberich WW, Mook WM, Carter CB, Ballarini R (2007) A crack extension force correlation for hard materials. Int J Fracture 148(2): 109–114

    Article  CAS  Google Scholar 

  • Gerberich WW, Mook WM, Perrey CR, Carter CB, Baskes MI, Mukherjee R, Gidwani A, Heberlein J, McMurry PH, Girshick SL (2003) Superhard silicon nanospheres. J Mech Phys Solids 51(6): 979–992

    Article  CAS  Google Scholar 

  • Gerbig YB, Stranick SJ, Morris DJ, Vaudin MD, Cook RF (2009) Effect of crystallographic orientation on phase transformations during indentation of silicon. J Mater Res 24(3): 1172–1183

    Article  CAS  Google Scholar 

  • Gilman JJ (1992) Insulator-metal transitions at microindentations. J Mater Res 7(3): 535–538

    Article  CAS  Google Scholar 

  • Gilman JJ (1993) Shear-induced metallization. Philos Mag B 67(2): 207–214

    Article  CAS  Google Scholar 

  • Gupta MC, Ruoff AL (1980) Static compression of silicon in the [100] and in the [111] directions. J Appl Phys 51(2): 1072–1075

    Article  CAS  Google Scholar 

  • Haasen P, Alexander H (1968) Dislocations and plastic flow in the diamond structure. Solid State Phys 22: 27–158

    Google Scholar 

  • Hannon JB, Kodambaka S, Ross FM, Tromp RM (2006) The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440(7080): 69–71

    Article  CAS  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Kailer A, Gogotsi YG, Nickel KG (1997) Phase transformations of silicon caused by contact loading. J Appl Phys 81(7): 3057–3057

    Article  CAS  Google Scholar 

  • Kim DE, Oh SI (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17(9): 2259–2265

    Article  CAS  Google Scholar 

  • Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, New York

    Book  Google Scholar 

  • Mann AB, van Heerden D, Pethica JB, Weihs TP (2000) Size-dependent phase transformations during point loading of silicon. J Mater Res 15(8): 1754–1758

    Article  CAS  Google Scholar 

  • Minor AM, Lilleodden ET, Jin M, Stach EA, Chrzan DC, Morris JW (2005) Room temperature dislocation plasticity in silicon. Philos Mag A 85(2–3): 323–330

    CAS  Google Scholar 

  • Mook WM, Nowak JD, Perrey CR, Carter CB, Mukherjee R, Girshick SL, McMurry PH, Gerberich WW (2007) Compressive stress effects on nanoparticle modulus and fracture. Phys Rev B 75(21): 214112

    Article  Google Scholar 

  • Nowak JD, Beaber AR, Ugurlu O, Girshick SL, Gerberich WW (2010) Small size strength dependence on dislocation nucleation. Scripta Mater 62(11): 819–822

    Article  CAS  Google Scholar 

  • Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6): 1564–1580

    Article  CAS  Google Scholar 

  • Rzepiejewska-Malyska F, Rzepiejewska-Malyska K, Leifer K, Hale LM, Tang Y, Ballarini R, Gerberich WW, Michler J (2009) Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv Funct Mater 19(15): 2439–2444

    Article  Google Scholar 

  • Page TF, Oliver WC, McHargue CJ (1992) Deformation behavior of ceramic crystals subjected to very low load (nano) indentations. J Mater Res 7(2): 450–473

    Article  CAS  Google Scholar 

  • Pharr GM (1998) Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A A253(1–2): 151–159

    CAS  Google Scholar 

  • Pharr GM, Oliver WC, Harding DS (1991) New evidence for a pressure-induced phase-transformation during the indentation of silicon. J Mater Res 6(6): 1129–1130

    Article  CAS  Google Scholar 

  • Ruffell S, Bradby JE, Williams JS, Munroe P (2007) Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon. J Appl Phys 102(6): 8

    Article  Google Scholar 

  • Saka H, Shimatani A, Suganuma M, Suprijadi (2002) Transmission electron microscopy of amorphization and phase transformation beneath indents in Si. Philos Mag A 82(10): 1971–1981

    Article  CAS  Google Scholar 

  • Sivakov V, Andrä G, Gösele U, Christiansen S (2006) Epitaxial vapor-liquid-solid growth of silicon nano-whiskers by electron beam evaporation. physica status solidi (a) 203(15): 3692–3698

    Article  CAS  Google Scholar 

  • Sivakov VA, Scholz R, Syrowatka F, Falk F, Gosele U, Christiansen SH (2009) Silicon nanowire oxidation: the influence of sidewall structure and gold distribution. Nanotechnology 40: 405607

    Article  Google Scholar 

  • Timoshenko S (1930) Strength of materials: part II, advanced theory and problems. D. Van Nostrand, Princeton

    Google Scholar 

  • Valentini P, Gerberich WW, Dumitrica T (2007) Phase transformation plasticity in silicon nanospheres. Phys Rev Lett 99: 175701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaber, A.R., Girshick, S.L. & Gerberich, W.W. Dislocation plasticity and phase transformations in Si-SiC core-shell nanotowers. Int J Fract 171, 177–183 (2011). https://doi.org/10.1007/s10704-010-9566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9566-6

Keywords

Navigation