Skip to main content
Log in

Dislocation modeling of quasi-static crack propagation in an elasto-plastic medium

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A dislocation model for simulating two-dimensional quasi-static crack propagation is presented. The crack and plastic flow along slip planes are described using dislocation dipoles. A stationary crack can be modeled as well as a propagating crack along a straight line inclined at an arbitrary angle to a free surface of a semi-infinite medium. Cracks are also allowed to kink. A superdipole algorithm is introduced to save simulation time without loosing important information and necessary geometric details. It reduces the number of dislocation dipoles on slip planes in the plastic wake. The paper gives results on crack shapes for stationary and advancing cracks as well as it describes how the size of the plastic zone depends on crack inclination angles. Results on stress intensity factors (SIF) are given using two different approaches as well as kinking cracks are introduced and SIF at kinked crack tips are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bilby BA, Cardew GE (1978) Stress intensity factors at the tips of kinked and forked cracks. The Fourth International Conference on fracture, University of Waterloo, Ontario, June 19–24, vol 3A, Pergamom Press, New York, pp 197–200

  • Bilby BA, Cottrell AH, Swinden KH (1963) The spread of plastic yield from a notch. Proc Roy Soc 272: 303–314

    ADS  Google Scholar 

  • Bjerkèn C, Melin S (2003) A tool to model short crack fatigue growth using a discrete dislocation formulation. Int J Fatigue 25: 559–566

    Article  MATH  Google Scholar 

  • Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16: 155–169

    Article  Google Scholar 

  • de Matos PFP, Nowell D (2006) Modelling fatigue crack closure using dislocation dipoles. In: Proceedings of 16th European conference of fracture, Alexandroupolis, Greece

  • Düber O, Künkler B, Krupp U, Christ H-J, Fritzen C-P (2006) Experimental characterization and two-dimensional simulation of short-crack propagation in an austenitic-ferritic duplex steel. Int J Fatigue 28: 983–992

    Article  Google Scholar 

  • Ewalds HL, Wanhill RJH (1986) Fracture mechanics. 3. Delftse Uitgevers Maatschappij, Delft

    Google Scholar 

  • Hansson P, Melin S, Persson C (2008) Computationally efficient modeling of short fatigue crack growth using dislocation formulations. Eng Fract Mech 75: 3189–3205

    Article  Google Scholar 

  • Head AK (1953) Edge dislocations in homogeneous media. Proc Phys Soc B 66: 793–801

    Article  ADS  Google Scholar 

  • Hirsch PB, Roberts SG, Samuels J (1989) The brittle-ductile transition in silicon—II. Interpre Proc R Soc Lond A 421: 25–53

    Article  CAS  ADS  Google Scholar 

  • Lakshmanan V, Li JCM (1988) Edge Dislocations Emitted along Inclined Planes from a Mode I Crack. Mater Sci Eng A 104: 95–104

    Article  Google Scholar 

  • Melin S (1986) When does a crack grow under mode II conditions?. Int J Fract 30: 103–114

    MathSciNet  Google Scholar 

  • Melin S (1994) Accurate data for stress intensity factors at infinitesimal kinks. J Appl Mech 61: 467–470

    Article  MATH  Google Scholar 

  • Nowell D (1998) A boundary element model of plasticity-induced fatigue crack closure. Fatigue Fract Eng Mater Struct 21(7): 857–871

    Article  Google Scholar 

  • Pippan R, Riemelmoser FO, Weinhandl H, Kreuzer H (2002) Plasticity-induced crack closure under plane-strain conditions in the near-threshold regime, Philosophical Magazine A: Physics of Condensed Matter. Struct Defec Mech Proper 82(17-18): 3299–3309

    CAS  Google Scholar 

  • Plank R, Kuhn G (1999) Fatigue crack propagation under non-proportional mixed mode loading. Eng Fract Mech 62: 203–229

    Article  Google Scholar 

  • Riemelmoser FO, Pippan R, Stüwe HP (1997) A comparison of a discrete dislocation model and a continuous description of cyclic crack tip plasticity. Int J Fract 85: 157–168

    Article  Google Scholar 

  • Riemelmoser RO, Pippan R, Stüwe HP (1998) An Argument for a cycle-by-cycle propagation of fatigue cracks at small stress intensity ranges. Acta Mater 46: 1793–1799

    Article  CAS  Google Scholar 

  • Riemelmoser FO, Gumbsch P, Pippan R (2000) Plastic deformation at short edge cracks under fatigue loading. Eng Fract Mech 66: 357–374

    Article  Google Scholar 

  • Riemelmoser FO, Gumbsch P, Pippan R (2001) Dislocation modelling of fatigue cracks: an overview. Mater Trans 42(1): 2–13

    Article  CAS  Google Scholar 

  • Riemelmoser FO, Pippan R (2002) Consideration of the mechanical behaviour of small fatigue cracks. Int J Fract 118: 251–270

    Article  Google Scholar 

  • Roberts SG, Noronha SJ, Wilkinson AJ, Hirsch PB (2002) Modelling the initiation of cleavage fracture of ferritic steels. Acta Materialia 50(5): 1229–1244

    Article  CAS  Google Scholar 

  • Schick A (2004) Ein neues Modell zur mechanismenorientierten Simulation der mikrostrukturbestimmten Kurzrissausbreitung, Fortschritt-Berichte VDI Reihe 18 (292)

  • Tanaka M, Tarleton E, Roberts SG (2008) The brittle-ductile transition in single-crystal iron. Acta Mater 56: 5123–5129

    Article  CAS  Google Scholar 

  • Wilkinson AJ, Hirsch PB, Roberts SG (1998) Modelling the threshold conditions for propagation of stage I fatigue cracks. Acta Mater 46: 379–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Stoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoll, A., Wilkinson, A.J. Dislocation modeling of quasi-static crack propagation in an elasto-plastic medium. Int J Fract 164, 103–115 (2010). https://doi.org/10.1007/s10704-010-9459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9459-8

Keywords

Navigation