Skip to main content
Log in

Complementarity Relations for Multi-Qubit Systems

  • Original Article
  • Published:
Foundations of Physics Letters

No Heading

We derive two complementarity relations that constrain the individual and bipartite properties that may simultaneously exist in a multi-qubit system. The first expression, valid for an arbitrary pure state of n qubits, demonstrates that the degree to which single particle properties are possessed by an individual member of the system is limited by the bipartite entanglement that exists between that qubit and the remainder of the system. This result implies that the phenomenon of entanglement sharing is one specific consequence of complementarity. The second expression, which holds for an arbitrary state of two qubits, pure or mixed, quantifies a tradeoff between the amounts of entanglement, separable uncertainty, and single particle properties that are encoded in the quantum state. The separable uncertainty is a natural measure of our ignorance about the properties possessed by individual subsystems, and may be used to completely characterize the relationship between entanglement and mixedness in two-qubit systems. The two-qubit complementarity relation yields a useful geometric picture in which the root mean square values of local subsystem properties act like coordinates in the space of density matrices, and suggests possible insights into the problem of interpreting quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).

    Google Scholar 

  2. 2. B. Schumacher, Phys. Rev. A 54, 2614 (1996).

    Google Scholar 

  3. 3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  4. 4. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  5. 5. N. Bohr, Nature 121, 580 (1928).

    Google Scholar 

  6. 6. N. Bohr, “Discussion with Einstein on epistemological problems in atomic physics,” in Quantum Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983).

    Google Scholar 

  7. 7. W. Heisenberg, “The physical content of quantum kinematics and mechanics,” in Quantum Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983).

    Google Scholar 

  8. 8. G. Jaeger, M. A. Horne, and A. Shimony, Phys. Rev. A 48, 1023 (1993).

    Google Scholar 

  9. 9. G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A 51, 54 (1995).

    Google Scholar 

  10. 10. B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996).

    Google Scholar 

  11. 11. B.-G. Englert and J. A. Bergou, Opt. Commun. 179, 337 (2000).

    Google Scholar 

  12. 12. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  13. 13. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 63, 063803/1 (2001).

    Google Scholar 

  14. 14. S. Durr, T. Nonn, and G. Rempe, Phys. Rev. Lett. 81, 5705 (1998).

    Google Scholar 

  15. 15. P. D. D. Schwindt, P. G. Kwiat, and B.-G. Englert, Phys. Rev. A 60, 4285 (1999).

    Google Scholar 

  16. 16. G. Jaeger, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 68, 022318/1 (2003).

    Google Scholar 

  17. 17. M. Jakob and J. A. Bergou, “Quantitative complementarity relations in bipartite systems,” unpublished, arXiv.org e-print quant-ph/0302075.

  18. 18. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A. 61, 052306/1 (2000).

    Google Scholar 

  19. 19. G. Vidal, J. Mod. Opt. 47, 355 (2000).

    Google Scholar 

  20. 20. P. Rungta and C. M. Caves, Phys. Rev. A 67, 012307/1 (2003).

    Google Scholar 

  21. 21. W. K. Wootters, Quantum Inf. Comput. 1, 27 (2001).

    Google Scholar 

  22. 22. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  Google Scholar 

  23. 23. K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).

    Google Scholar 

  24. 24. S. Ishizaka and T. Hiroshima, Phys. Rev. A 62, 022310/1 (2000).

    Google Scholar 

  25. 25. F. Verstraete, K. Audenaert, and B. De Moor, Phys. Rev. A 64, 012316/1 (2001).

    Google Scholar 

  26. 26. W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, Phys. Rev. A 64, 030302(R)/1 (2001).

    Google Scholar 

  27. 27. T.-C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro, and F. Verstraete, Phys. Rev. A 67, 022110/1 (2003).

    Google Scholar 

  28. 28. G. Adesso, F. Illuminati, and S. De Siena, Phys. Rev. A 68, 062318/1 (2003).

    Google Scholar 

  29. 29. S. Bose and V. Vedral, Phys. Rev. A 61, 040101/1 (2000).

    Google Scholar 

  30. 30. A. Ekert and P. L. Knight, Am. J. Phys. 63, 415 (1995).

    Google Scholar 

  31. 31. W. Dur, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314/1 (2000).

    Google Scholar 

  32. 32. P. Rungta, V. Buzek, C. M. Caves, H. Hillery, and G. J. Milburn, Phys. Rev. A 64, 042315/1 (2001).

    Google Scholar 

  33. 33. M. Lewenstein and A. Sanpera, Phys. Rev. Lett. 80, 2261 (1998).

    Google Scholar 

  34. 34. R. F. Werner, Phys. Rev. A 40, 4277 (1989).

    Article  Google Scholar 

  35. 35. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  36. 36. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (The University of Illinois Press, Urbana, 1962).

    Google Scholar 

  37. 37. E. T. Jaynes, “Probability in quantum theory,” Workshop on Complexity, Entropy, and the Physics of Information (1989).

  38. 38. G. M. D’Ariano, Fortschr. Phys. 51, 318 (2003).

    Google Scholar 

  39. 39. C. M. Caves, C. A. Fuchs, and R. Schack, Phys. Rev. A 65, 022305/1 (2002).

    Google Scholar 

  40. 40. J. von Neumann, “Measurement and reversibility and the measuring process,” in Quantum Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983).

    Google Scholar 

  41. 41. R. Landauer, Phys. Today 44, 23 (1991).

    Google Scholar 

  42. 42. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey E. Tessier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tessier, T. Complementarity Relations for Multi-Qubit Systems. Found Phys Lett 18, 107–121 (2005). https://doi.org/10.1007/s10702-005-3956-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-005-3956-4

Key words:

Navigation