Skip to main content
Log in

Dirac Theory in Hydrodynamic Form

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider quantum mechanics written in hydrodynamic formulation for the case of relativistic spinor fields to study their velocity: within such a hydrodynamic formulation it is possible to see that the velocity as is usually defined can not actually represent the tangent vector to the trajectories of particles. We propose an alternative definition for this tangent vector and hence for the trajectories of particles, which we believe to be new and the only one possible. We discuss how these results are a necessary step to take in order to face further problems, like the definition of trajectories for multi-particle systems or ensembles, as they happen to be useful in many applications and interpretations of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8, 476 (2012)

    Article  Google Scholar 

  2. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  4. Bohm, D., Aharonov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108, 1070 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. John Stewart Bell: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  7. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  MATH  Google Scholar 

  8. Kochen, S., Specker, E.: The Problem of Hidden Variables in Quantum Mechanics. J. Math. Mech. 17, 59 (1968)

    MathSciNet  MATH  Google Scholar 

  9. Cabello, A.: Interpretations of Quantum Theory: A Map of Madness–In Information and Quantum Mechanics. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  10. de Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Radium 8, 225 (1927)

    Article  MATH  Google Scholar 

  11. de Broglie, L.: Sur l’introduction des idées d’onde-pilote et de double solution dans la théorie de l’électron de Dirac. C. R. Acad. Sci. 235, 557 (1952)

    MATH  Google Scholar 

  12. Vigier, J.P.: Forces s’exerçant sur les lignes de courant usuelles des particules de spin \(0\), \(1/2\) et \(1\) en théorie de l’onde pilote. C. R. Acad. Sci. 235, 1107 (1952)

    MATH  Google Scholar 

  13. Vigier, J.P.: Structures des micro-objets dans l’interpretation causale de la théorie des quanta. Ph.D. Thesis (1956)

  14. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘Hidden’ Variables. Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Takabayasi, Takehiko: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8, 143 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bohm, D.: Comments on an article of Takabayasi concerning l. Prog. Theor. Phys. 9, 273 (1953)

    Article  ADS  MATH  Google Scholar 

  17. Bohm, D., Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation (A and B). Nuovo Cimento 1, 48 and 67 (1955)

  18. Takabayasi, T.: On the hydrodynamical representation of non-relativistic spinor equation. Prog. Theor. Phys. 12, 810 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  19. Holland, P.R.: The Dirac equation in the de Broglie-Bohm theory of motion. Found. Phys. 22, 1287 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. Dürr, D., Munch-Berndl, K.: A hypersurface Bohm-Dirac theory. Phys. Rev. A 60, 2729 (1999)

    Article  ADS  Google Scholar 

  21. Dürr, D., Goldstein, S., Norsen, T., Struyve, W., Zanghì, N.: Can Bohmian mechanics be made relativistic? Proc. R. Soc. Lond. A 470, 20130699 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Yvon, J.: Équations de Dirac-Madelung. J. Phys. Radium 1, 18 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  23. Takabayasi, T.: Relativistic hydrodynamics equivalent to the Dirac equation. Prog. Theor. Phys. 13, 222 (1955)

    Article  ADS  Google Scholar 

  24. Takabayasi, T.: Hydrodynamical description of the Dirac equation. Nuovo Cimento 3, 233 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  25. Takabayasi, T.: Relativistic hydrodynamics of the dirac matter. Prog. Theor. Phys. Supplement 4, 1 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jakobi, G., Lochak, G.: Introduction des paramètres relativistes de Cayley-Klein dans la représentation hydrodynamique de l’équation de Dirac. C. R. Acad. Sci. 243, 234 (1956)

    MathSciNet  Google Scholar 

  27. Jakobi, G., Lochak, G.: Decomposition en paramètres de Clebsch de l’impulsion de Dirac et interprétation physique de l’invariance de jauge des équations de la Mécanique ondulatoire. C. R. Acad. Sci. 243, 357 (1956)

    MathSciNet  Google Scholar 

  28. Fabbri, L.: Spinors in polar form. Eur. Phys. J. Plus 136, 354 (2021)

    Article  Google Scholar 

  29. Fabbri, L.: de Broglie-Bohm formulation of Dirac fields. Found. Phys. 52, 116 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Holland, Peter R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  31. Tumulka, R.: Foundations of Quantum Mechanics. Springer, Cham (2022)

    Book  MATH  Google Scholar 

  32. Drezet, A.: Justifying Born’s rule \(P_{\alpha }=|\Psi _{\alpha }|^{2}\) using deterministic chaos, decoherence, and the de Broglie-Bohm quantum theory. Entropy 23, 1371 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. Drezet, A.: Making sense of Born’s rule \(p_{\alpha }=|\!|\Psi _{\alpha }|\!|^{2}\) with the many-minds interpretation. Quant. Stud. Math. Found. 8, 315 (2021)

    Article  MathSciNet  Google Scholar 

  34. Drezet, A.: Forewords for the special issue ‘Pilot-wave and beyond: Louis de Broglie and David Bohm’s quest for a quantum ontology’. Foundations of Physics (2022)

  35. Holland, P.: Uniqueness of paths in quantum mechanics. Phys. Rev. A 60, 4326 (1999)

    Article  ADS  Google Scholar 

  36. Fabbri, L.: Geometry, Zitterbewegung, Quantization. Int. J. Geom. Meth. Mod. Phys. 16, 1950146 (2019)

    Article  MathSciNet  Google Scholar 

  37. Gondran, M., Gondran, A.: Replacing the singlet spinor of the EPR-B experiment in the configuration space with two single-particle spinors in physical space. Found. Phys. 46, 1109 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

Download references

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

Luca Fabbri did all computations, wrote the main manuscript and reviewed the final version.

Corresponding author

Correspondence to Luca Fabbri.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbri, L. Dirac Theory in Hydrodynamic Form. Found Phys 53, 54 (2023). https://doi.org/10.1007/s10701-023-00695-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00695-w

Keywords

Navigation