Skip to main content
Log in

Panorama Behaviors of Holographic Dark Energy Models in Modified Gravity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A class of solutions of field equations in \(f(R,T)\) gravity proposed by Harko et. al. (2011) for a Bianchi type I (Kasner form) space–time with dark matter and Holographic Dark Energy (HDE) is mentioned. Exact solutions of field equations are obtained with volumetric power and exponential expansion laws. The negative value of the deceleration parameter represents the present acceleration of the universe. It is observed that EoS parameter of HDE is a decreasing function, converges to the negative value in Power-law model whereas in exponential model, it behaves like cosmological constant. The overall density parameter approaches to some constant values close to 1 which is in agreement with the observational data of the universe. The physical and geometrical parameters of the models are discussed in detail. The statefinder diagnostic pair and jerk parameter are analyzed to characterize completely different phases of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Spergel, D.N., et al.: First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: determination of cosmological parameters. Astrophys. J. Suppl 148, 175–194 (2003)

    ADS  Google Scholar 

  2. Riess, A., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  3. Tegmark, M., et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)

    ADS  MATH  Google Scholar 

  4. Wetterich, C.: Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668 (1988)

    ADS  Google Scholar 

  5. Ratra, B., Peebles, J.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 321 (1988)

    Google Scholar 

  6. Caldwell, R.R.: A Phantom Menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23 (2002)

    ADS  Google Scholar 

  7. Nojiri, S., Odintsov, S.D.: de Sitter brane universe induced by phantom and quantum effects. Phys. Lett. B 565, 1 (2003)

    ADS  MATH  Google Scholar 

  8. Chiba, T., et al.: Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000)

    ADS  Google Scholar 

  9. Amendariz-Picon, C., et al.: Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85, 4438 (2000)

    ADS  Google Scholar 

  10. Amendariz-Picon, C., et al.: Essentials of k-essence. Phy. Rev. Lett. 63, 103510 (2001)

    ADS  Google Scholar 

  11. Sen, A.: Tachyon matter. J. High Energy Phys. 04, 048 (2002)

    ADS  MathSciNet  Google Scholar 

  12. Padmanabhan, T., Chaudhury, T.R.: Can the clustered dark matter and the smooth dark energy arise from the same scalar field ? Phys. Rev. D 66, 081301 (2002)

    ADS  Google Scholar 

  13. Bento, M.C., et al.: Generalized chaplygin gas, accelerated expansion and dark energy-matter unification. Phy. Rev. D 66,043507 (2002)

  14. Kamenchik, A., et al.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    ADS  Google Scholar 

  15. Zhang, L., Wu, P., Yu, H.: Unifying dark energy and dark matter with the modified Ricci model. Eur. Phys. J. C 71, 1588 (2011)

    ADS  Google Scholar 

  16. Granda, L.N., Oliveros, A.: New infrared cut-off for the holographic scalar fields models of dark energy. Phys. Lett. B 671, 199 (2009)

    ADS  Google Scholar 

  17. S D Katore and A Y Shaikh: Kantowaski–Sachs Dark Energy Model in f (R, T) Gravity, Prespacetime Journal 3 (11) (2012).

  18. Reddy, D.R.K., Kumar, S., Kumar, P.: Bianchi type-III dark energy model in f (R, T) gravity. Int. J. Theor. Phys. 52, 239 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Sahoo, P.K., Mishra, B.: Kaluza-Klein dark energy model in the form of wet dark fluid in f(R, T) gravity. Can. J. Phys. 92, 1062 (2014)

    ADS  Google Scholar 

  20. Rao, V.U.M., Papa Rao, D.C.: Five dimensional anisotropic dark energy model in f(R, T) gravity. Astrophys. Space Sci. 357, 65 (2015)

    ADS  Google Scholar 

  21. Singh, C.P., Kumar, P.: Statefinder diagnosis for holographic dark energy models in modified f(R, T) gravity. Astrophys. Space Sci. 361, 157 (2016)

    ADS  MathSciNet  Google Scholar 

  22. Shaikh, A.Y.: Binary mixture of perfect fluid and dark energy in modified theory of gravity. Int J Theor Phys (2016). https://doi.org/10.1007/s10773-016-2942-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Shaikh, A.Y., Katore, S.D.: Hypersurface-homogeneous Universe filled with perfect fluid in f (R, T) theory of gravity. Prama J. Phys. 87, 83 (2016)

    ADS  Google Scholar 

  24. Shaikh, A.Y., Wankhade, K.S.: Hypersurface-homogeneous universe with Λ in f (R, T) gravity by hybrid expansion law. Theor. Phys. 2(1), 34–43 (2017)

    Google Scholar 

  25. Moraes, P.H.R.S., Sahoo, P.K.: The simplest non-minimal matter-geometry coupling in the f(R, T) cosmology. Eur. Phys. J. C 77, 480 (2017)

    ADS  Google Scholar 

  26. Sharif, M., Siddiqa, A.: Study of stellar structures in f(R, T) gravity. Int. J. Mod. Phys. D 27, 1850065 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Yousaf, Z., et al.: Existence of compact structures in f ( R, T ) gravity. Eur. Phys. J. C 78, 307 (2018)

    ADS  Google Scholar 

  28. Deb, D., et al.: Strange stars in f (R, ) gravity. J. Cosmol. Astropart. Phys. 03, 044 (2018)

    ADS  Google Scholar 

  29. Deb, D., et al.: Anisotropic strange stars under simplest minimal matter-geometry coupling in the f(R, T) gravity Phys. Rev. D 97, 084026 (2018)

    MathSciNet  Google Scholar 

  30. Zubair, M., et al.: Anisotropic stellar filaments evolving under expansion-free condition in f(R, T) gravity. Int. J. Mod. Phys. D 27, 1850047 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Azmat, H., et al.: Dynamics of shearing viscous fluids in f(R, T) gravity. Int. J. Mod. Phys. D 27, 1750181 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Moraes, P.H.R.S., Sahoo, P.K., Kulkarni, S.S., Agarwal, S.: An exponential shape function for wormholes in modified gravity. Chin. Phys. Lett. 36(12), 120401 (2019)

    ADS  Google Scholar 

  33. Srivastava, M., Singh, C.P.: New holographic dark energy model with constant bulk viscosity in modified f(R, T) gravity theory. Astrophys. Space Sci. 363, 117 (2018)

    ADS  MathSciNet  Google Scholar 

  34. Moraes, P.H.R.S., Sahoo, P.K.: Wormholes in exponential f(R, T) gravity. Eur. Phys. J. C 79, 677 (2019)

    ADS  Google Scholar 

  35. Kasner, E.: Geometrical theorems on Einstein’s cosmological equations. Am. J. Math. 43, 217 (1921)

    MathSciNet  MATH  Google Scholar 

  36. Paliathanasis, A., Said, J.L., Barrow, J.D.: Stability of the Kasner universe in f(T) gravity. Phys. Rev. D. 97, 044008 (2018)

    ADS  MathSciNet  Google Scholar 

  37. Hoof't.: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026. (1995)

  38. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Li, M.: A model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    ADS  Google Scholar 

  40. Horova, P., Minic, D.: Probable values of the cosmological constant in a holographic theory. Phys. Rev. Lett. 85, 1610 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Thomas, S.: Holography stabilizes the vacuum energy. Phys. Rev. Lett. 89, 081301 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Hsu, S.D.H.: Entropy bounds and dark energy. Phys. Lett. B 594, 13 (2004)

    ADS  Google Scholar 

  43. Li, M.: A model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    ADS  Google Scholar 

  44. Setare, M.R.: The holographic dark energy in non-flat Brans-Dicke cosmology. Phys. Lett. B 644, 99 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Banerjee, N., Pavon, D.: Holographic dark energy in Brans-Dicke theory. Phys. Lett. B 647, 477 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Sheykhi, A.: Interacting holographic dark energy in Brans-Dicke theory. arXiv:0907.5458v4 [hep-th] (2009)

  47. Sharif, M., Jawad, A.: Interacting modified holographic dark energy in Kaluza-Klein universe. Astrophys. Space Sci. 337, 789 (2012)

    ADS  MATH  Google Scholar 

  48. Samanta, G.C.: Holographic dark energy (DE) cosmological models with quintessence in bianchi type-V space time. Int. J. Theor. Phys. 52, 4389 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Sarkar, S., Mahanta, C.R.: Holographic dark energy model with quintessence in Bianchi type-I space-time. Int. J. Theor. Phys. 52, 1482 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Sarkar, S.: Holographic dark energy model with linearly varying deceleration parameter and generalised Chaplygin gas dark energy model in Bianchi type-I universe. Astrophys. Space Sci. 349, 985 (2014)

    ADS  Google Scholar 

  51. Sarkar, S.: Interacting holographic dark energy with variable deceleration parameter and accreting black holes in Bianchi type-V universe. Astrophys. Space Sci. 352, 245 (2014)

    ADS  Google Scholar 

  52. Sarkar, S.: Holographic dark energy with linearly varying deceleration parameter and escaping big rip singularity of the Bianchi type-V universe. Astrophys. Space Sci. 352, 859 (2014)

    ADS  Google Scholar 

  53. Jawad, A., et al.: Modified holographic Ricci dark energy in chameleon brans-dicke cosmology and its thermodynamic consequence. Commun. Theor. Phys. 63, 453 (2015)

    ADS  MATH  Google Scholar 

  54. Reddy, D.R.K., Raju, P., Shobanbabu, K.: Five dimensional spherically symmetric minimally interacting holographic dark energy model in Brans-Dicke theory. Astrophys. Space Sci. 361, 123 (2016)

    ADS  MathSciNet  Google Scholar 

  55. Rao, V.U.M., DivyaPrasanthi, U.Y.: Bianchi type-I and -III modified holographic Ricci Dark energy models in Saez-Ballester theory. Eur. Phys. J. Plus 132, 64 (2017)

    Google Scholar 

  56. Reddy, D.R.K.: Bianchi type-V modified holographic Ricci dark energy models in Saez-Ballester theory of gravitation. Can. J. Phys. 95, 145 (2017)

    ADS  Google Scholar 

  57. Dasuaidu, K., Reddy, D.R.K., Aditya, Y.: (303) Dynamics of axially symmetric anisotropic modified holographic Ricci dark energy model in Brans-Dicke theory of gravitation. Eur. Phys. J. Plus 133, 303 (2018)

    Google Scholar 

  58. Aditya, Y., Reddy, D.R.K.: FRW type Kaluza-Klein modified holographic Ricci dark energy models in Brans-Dicke theory of gravitation. Eur. Phys. J. C 78, 619 (2018)

    ADS  Google Scholar 

  59. Singh, C.P., Kumar, A.: Ricci dark energy model with bulk viscosity. Eur. Phys. J. Plus 133, 312 (2018)

    Google Scholar 

  60. Sharma, U.K., Pradhan, A.: Diagnosis Tsallis holographic dark energy models with statefinder and ω − ω ′ pair. Mod. Phys. Lett. A 34, 1950101 (2019)

    ADS  Google Scholar 

  61. Harko, T., et al.: f(R, T) gravity. Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  62. Sahni, V., et al.: Statefinder—a new geometrical diagnostic of dark energy. JETP 77, 201 (2003)

    Google Scholar 

  63. Chiba, T., Nakamura, T.: The luminosity distance, the equation of state, and the geometry of the universe. Prog. Theor. Phys. 100, 1077 (1998)

    ADS  Google Scholar 

  64. Katore, S.D., Adhav, K.S., Shaikh, A.Y., Sancheti, M.M.: Plane symmetric cosmological models with perfect fluid and dark energy. Astrophys. Space Sci. 333(1), 333–341 (2011)

    ADS  MATH  Google Scholar 

  65. Katore, S.D., Shaikh, A.Y.: Plane symmetric dark energy model in Brans-Dicke theory of gravitation. Bulg. J. Phys. 39, 241–247 (2012)

    Google Scholar 

  66. Katore, S.D., Shaikh, A.Y.: Statefinder diagnostic for modified chaplygin gas in plane symmetric universe. Afr. Rev. Phys. 7, 0004 (2012)

    Google Scholar 

  67. Katore, S.D., Shaikh, A.Y.: Plane symmetric universe with cosmic string and bulk viscosity in scalar tensor theory of gravitation. Rom. J. Phys. 59(7–8), 715–723 (2014)

    Google Scholar 

  68. Shaikh, A.Y., Katore, S.D.: Bianchi type VI0 cosmological model with bulk viscosity in f(R) theory. Bulg. J. Phys. 43, 184–194 (2016)

    Google Scholar 

  69. Cunha, C.E., Lima, M., Oyaizu, H., Frieman, J., Lin, H.: Estimating the redshift distribution of photometric galaxy samples II. Applications and Tests of a New Method. Mon. Not. R. Astron. Soc. 396, 2379 (2009)

    ADS  Google Scholar 

  70. Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    ADS  MATH  Google Scholar 

  71. Riess, A.G., et al.: Type Ia supernova discoveries at z > 1 from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)

    ADS  MATH  Google Scholar 

  72. Vinutha, T., Rao, V.U.M., Bekele, G.: Katowski-Sachs generalized ghost dark energy cosmological model in Saez-Ballester scalar-tensor theory. IOP Conf. Ser. 1344, 012035 (2019)

    Google Scholar 

  73. Katore, S.D., Shaikh, A.Y.: Bianchi Type V magnetized anisotropic dark energy models with constant deceleration parameter. Afr. Rev. Phys. 9, 0054 (2014)

    Google Scholar 

  74. Katore, S.D.: A Y Shaikh and K S Wankhade : Plane Symmetric Inflationary Universe with Massless Scalar Field and Time Varying Lambda. The African Review of Physics 10, 22 (2015)

    Google Scholar 

  75. Katore, S.D., Shaikh, A.Y.: Hypersurface-homogeneous space-time with anisotropic dark energy in scalar tensor theory of gravitation. Astrophys. Space Sci. 357, 27 (2015). https://doi.org/10.1007/s10509-015-2297-4

    Article  ADS  Google Scholar 

  76. Shaikh, A.Y.: Dark energy cosmological models with linear equation of state in plane symmetric universe. Adv. Astrophys. 1(50), 2017 (2017). https://doi.org/10.22606/adap.2017.23002

    Article  Google Scholar 

  77. Planck Collaboration: Planck 2018 results. VI. Cosmological parameters, A&A 641, A6 (2020), arXiv:1807.06209

  78. Bennett, C.L., et al.: First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. Astrophys. J. Suppl. 148, 1 (2003)

    ADS  Google Scholar 

  79. Katore, S.D., Shaikh, A.Y., Kapse, D.V., Bhaskar, S.A.: FRW bulk viscous cosmology in multi dimensional space-time. Int. J. Theor. Phys. 50, 2644 (2011)

    MathSciNet  MATH  Google Scholar 

  80. Shaikh, A.Y., Katore, S.D.: Magnetized anisotropic dark energy models with constant deceleration parameter. Pramana J. Phys. 87, 88 (2016)

    ADS  Google Scholar 

  81. Shaikh, A.Y., Shaikh, A.S., Wankhade, K.S.: Hypersurface-homogeneous modified holographic Ricci dark energy cosmological model by hybrid expansion law in Saez-Ballester theory of gravitation. J. Astrophys. Astron. 40, 25 (2019)

    ADS  Google Scholar 

  82. Granda, L.N., Oliveros, A.: Infrared cut-off proposal for the Holographic density. Phys. Lett. B 669, 275 (2008)

    ADS  Google Scholar 

  83. Shaikh, A.Y., Mishra, B.: Analysis of observational parameters and stability in extended teleparallel gravity. Int. J. Geom. Methods Mod. Phys. 17(11), 2050158 (2020)

    MathSciNet  Google Scholar 

  84. Shaikh, A.Y., Shaikh, A.S., Wankhade, K.S.: Transist dark energy and thermodynamical aspects of the cosmological model in teleparallel gravity. Prama J. Phys. 95, 19 (2021)

    ADS  Google Scholar 

  85. Shaikh, A.Y.: Viscous dark energy cosmological models in brans-dicke theory of gravitation. Bulg. J. Phys. 47, 43–58 (2020)

    Google Scholar 

  86. Shaikh, A.Y., Mishra, B.: Bouncing scenario of general relativistic hydrodynamics in extended gravity. Commun. Theor. Phys. 73, 025401 (2021)

    ADS  MathSciNet  Google Scholar 

  87. Shaikh, A.Y., Gore, S.V., Katore, S.D.: Cosmic acceleration and stability of cosmological models in extended teleparallel gravity. Prama J. Phys. 95, 16 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

We are very indebted to the editor and the anonymous referees for illuminating suggestions that have significantly improved our paper in terms of research quality as well as the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Shaikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.Y., Wankhade, K.S. Panorama Behaviors of Holographic Dark Energy Models in Modified Gravity. Found Phys 51, 58 (2021). https://doi.org/10.1007/s10701-021-00463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00463-8

Keywords

Navigation