Skip to main content
Log in

Heisenberg Uncertainty Relations as Statistical Invariants

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Surely, one would like to be able to deduce the quantitative laws of quantum mechanics directly from their anschaulich foundations, that is, essentially, relation \({\delta }p\,{\delta }q \thicksim h\). (Werner Heisenberg [8], p. 196)

Abstract

For a simple set of observables we can express, in terms of transition probabilities alone, the Heisenberg uncertainty relations, so that they are proven to be not only necessary, but sufficient too, in order for the given observables to admit a quantum model. Furthermore distinguished characterizations of strictly complex and real quantum models, with some ancillary results, are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In all the equations, ellipsis stands for all similar relations involving the observables left over.

  2. \({\hat{A}},{\hat{B}},{\hat{C}}\) are defined up to a common unitary transformation, cfr. [1, Corollary 8]. A self-adjoint operator having eigenvalues is just a spin operator.

  3. Said eigenstates as well.

  4. Cfr. Appendix 1.

  5. Any common unitary transformation of \({\hat{A}},{\hat{B}},{\hat{C}},\) referred to in note 2, induces a common rotation of \(u_A,u_B,u_C,\) cfr. [1, Corollary 8] proof.

  6. Observe that \(u_A,u_B,u_C\) are necessarily distinct and pairwise non collinear, due to the assumption (5).

  7. For a recent review cfr. [9] and the bibliography therein.

  8. As known a state is defined as a norm 1 element of \(\mathscr {H}\) up to a phase factor.

  9. The first addend in the r.h.s. is said the covariance term and the second the commutator term.

  10. One has also that \(\psi =\psi _2(-w)\), but it is not required here; w is known as a representation of the state \(\psi \) on the Bloch’s sphere \(S^{(2)}\).

  11. In a basis of \(\mathscr {H}\) in which the Pauli matrices have the usual form (9), cfr. for example [1], p. 170.

  12. Similar assertions hold taking any permutation of the operators \({\hat{A}},{\hat{B}},{\hat{C}}.\)

  13. where \(\Delta {\hat{Z}}:=\sqrt{ Var ({\hat{Z}})}\) denotes the standard deviation of \({\hat{Z}}.\) The r.h.s. is said the correlation term.

  14. Cfr. Appendix 4.

  15. Cfr. Note 12. The symbol \(\langle \;\; \rangle _{\psi }\) denotes the average computed in the state \(\psi .\)

  16. Furthermore cfr. note 6.

  17. In a basis of \(\mathscr {H}\) in which the Pauli matrices have the usual form (9), cfr. for example [1], p. 170.

  18. \(\varepsilon _{ jkl }\) denotes the Levi-Civita symbol; on repeated indices summation is understood.

References

  1. Accardi, L., Fedullo, A.: On the statistical meaning of complex numbers in quantum mechanics. Lett. Nuovo Cim. 34(7), 161–172 (1982)

    Article  MathSciNet  Google Scholar 

  2. Accardi, L.: Some trends and problems in quantum probability. In: Accardi, L., Frigerio, A., Gorini, V. (eds.) Quantum probability and applications to the quantum theory of irreversible processes, pp. 1–19. Lecture Notes in Mathematics, Vol. 1055, Springer, Berlin (1984)

    Chapter  Google Scholar 

  3. Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen. Math. Ann. 43, 63–100 (1893). Gesammelte Abh., Springer, 1, 460–497 (1921). English translation: a comparative review of recent researches in geometry, by Mellen Haskell, Bull. N. Y. Math. Soc., 2 (10), 215–249 (1893)

    Article  MathSciNet  Google Scholar 

  4. Gudder, S., Zanghì, N.: Probability models. Il Nuovo Cim. 79 B(2), 291–301 (1982)

    ADS  MathSciNet  Google Scholar 

  5. Fedullo, A.: On the existence of a Hilbert space model for finite valued observables. Il Nuovo Cim. 107 B(12), 1413–1426 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley Publishing Company, Boston (1968)

    MATH  Google Scholar 

  7. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik, Die Grundlehren der Mathematischen Wissenschaften, Band 38. Springer, Berlin (1932). English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press (1971)

    Google Scholar 

  8. Heisenberg, W.: Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43(3–4), 172–198 (1927). English translation in [13, 62–84]

    Article  ADS  Google Scholar 

  9. Sen, D.: The uncertainty relations in quantum mechanics. Curr. Sci. 107(2), 203–218 (2014)

    Google Scholar 

  10. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 573–574 (1929). Reprinted in [13, 127–128]

    Article  Google Scholar 

  11. Schrödinger, E.: The uncertainty relations in quantum mechanics. Zum Heisenbergschen Unschärfeprinzip, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 14, 296–303 (1930)

    Google Scholar 

  12. Griffiths, D.: Quantum Mechanics. Pearson, Upper Saddle River (2005)

    Google Scholar 

  13. Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniello Fedullo.

Appendix

Appendix

1. Results quoted from [1].

Theorem 7

The following assertions are equivalent:

  1. (i)

    the transition matrices PQR admit a complex Hilbert space model;

  2. (ii)

    the transition matrices PQR admit a spin model;

  3. (iii)

    \(\cos ^2\alpha +\cos ^2\beta +\cos ^2\gamma -1\le 2\;\cos \alpha \;\cos \beta \;\cos \gamma ;\)

  4. (iv)

    \(-1\le \frac{\cos ^2\frac{\alpha }{2}+\cos ^2\frac{\beta }{2}+\cos ^2\frac{\gamma }{2}\;-\;1}{2\cos \frac{\alpha }{2}\cos \frac{\beta }{2}\cos \frac{\gamma }{2}}\le 1;\)

  5. (v)

    \(-1\;\le \;\frac{p\;+\;q\;+\;r\;-\;1}{2\sqrt{p\;q\;r}}\;\le \;1;\)

  6. (vi)

    \([\sqrt{pq}-\sqrt{(1-p)(1-q)}]^2\;\le \;r\;\le \;[\sqrt{pq}+\sqrt{(1-p)(1-q)}]^2\)

Proposition 3

Three vectors \(a,b,c\in S^{(2)}\) satisfying

$$\begin{aligned} \cos \alpha =\cos \widehat{ab},\;\cos \beta =\cos \widehat{bc},\;\cos \gamma =\cos \widehat{ca} \end{aligned}$$

exist if and only if

$$\begin{aligned} \cos ^2\alpha +\cos ^2\beta +\cos ^2\gamma -1\le 2\;\cos \alpha \;\cos \beta \;\cos \gamma . \end{aligned}$$

Theorem 9

The transition matrices PQR admit a real Hilbert space model if and only if \(\frac{p\;+\;q\;+\;r\;-\;1}{2\sqrt{p\;q\;r}}\;=\;+1\) or \(\frac{p\;+\;q\;+\;r\;-\;1}{2\sqrt{p\;q\;r}}\;=\;-1\) or equivalently \(\sqrt{r}\;=\;\sqrt{pq}+\sqrt{(1-p)(1-q)}\) or \(\sqrt{r}\;=\;\left| \sqrt{pq}-\sqrt{(1-p)(1-q)}\right| \).

Theorem 10

The transition matrices PQR admit a real Hilbert space model if and only if they admit a spin model defined by a coplanar triple of vectors in \(S^{(2)}\).

2. Proof of Lemma 4.1

Putting for simplicity \(z_{+\ }:=\frac{z_1+z_2}{2}\) and \(z_{-\ }:=\frac{z_1-z_2}{2},\) by equation (10) we get

$$\begin{aligned} \langle {\hat{Z}}\rangle =z_{+\ }+z_{-\ }\langle u_Z\cdot \sigma \rangle \end{aligned}$$

and, since \(\langle (u_Z\cdot \sigma )^2\rangle =\langle {\hat{1}}\rangle =1,\)

$$\begin{aligned} \langle {\hat{Z}}^2\rangle =(z^2)_{+\ }+2z_{+\ }z_{-\ }\langle u_Z\cdot \sigma \rangle , \end{aligned}$$

from which we obtain

$$\begin{aligned} Var ({\hat{Z}})=z^2_{-{\ }} Var (u_Z\cdot \sigma ). \end{aligned}$$

Further, with easily understood notations, we have

$$\begin{aligned} \frac{1}{2}\langle \{{\hat{X}},{\hat{Y}}\}\rangle \;=\;x_{+\ }y_{+\ }+\;x_{-\ }y_{+\ }\langle u_X\cdot \sigma \rangle \;+\;x_{+\ }y_{-\ }\langle u_Y\cdot \sigma \rangle \;+\;\frac{1}{2}\langle \{u_X\cdot \sigma ,u_Y\cdot \sigma \}\rangle , \end{aligned}$$

so that

$$\begin{aligned} \frac{1}{2}\langle \{{\hat{X}},{\hat{Y}}\}\rangle -\langle {\hat{X}}\rangle \langle {\hat{Y}}\rangle \;=\;x_{-\ }y_{-\ }\left( \frac{1}{2}\langle \{u_X\cdot \sigma ,u_Y\cdot \sigma \}\rangle -\langle u_X\cdot \sigma \rangle \langle u_Y\cdot \sigma \rangle \right) ; \end{aligned}$$

last, quite directly, we get

$$\begin{aligned} \frac{1}{2i}\langle [{\hat{X}},{\hat{Y}}]\rangle \;=\;x_{-\ }y_{-\ }\frac{1}{2i}\langle [u_X\cdot \sigma ,u_Y\cdot \sigma ]\rangle . \end{aligned}$$

\(\square \)

3. Proof of Lemma 4.2

By definition \(u\cdot \sigma =\left[ \begin{matrix}u_3&{}u_1-iu_2\\ u_1+iu_2&{}-u_3\end{matrix}\right] ,\) so that for every state \(\psi \) one has

$$\begin{aligned} \langle u\cdot \sigma \rangle= & {} \langle (u\cdot \sigma )\psi |\psi \rangle =[\overline{\psi _1}\;\;\;\overline{\psi _2}][u_3\psi _1+(u_1-iu_2)\psi _2\;\;\;\;\;(u_1+iu_2)\psi _1-u_3\psi _2]^T\\= & {} 2u_1\mathfrak {R}(\overline{\psi _1}\psi _2)+2u_2\mathfrak {I}(\overline{\psi _1}\psi _2)+u_3(\left| \psi _1\right| ^2-\left| \psi _2\right| ^{2.}). \end{aligned}$$

SinceFootnote 17 as known \(\psi _1(w)=\left[ \begin{array}{ll}\sqrt{\frac{1+w_3}{2}}&{}\frac{w_1+i\;w_2}{\sqrt{2(1+w_3)}}\\ \end{array}\right] ^T\) and \(\psi _2(w)=\left[ \begin{array}{ll}\sqrt{\frac{1-w_3}{2}}&{}-\frac{w_1+i\;w_2}{\sqrt{2(1-w_3)}}\\ \end{array}\right] ^T,\) putting them in the former formula, with easy calculations we get \(\langle u\cdot \sigma \rangle _{\psi _1(w)}=u\cdot w\) and \(\langle u\cdot \sigma \rangle _{\psi _2(w)}=-u\cdot w\) as asserted in Eq. (19). Further it is soon seen that \((u\cdot \sigma )^2={\hat{1}},\) so that \(\langle (u\cdot \sigma )^2\rangle =1,\) thus, in the said states, \( Var (u\cdot \sigma )=\langle u\cdot \sigma \rangle ^2-(\langle u\cdot \sigma \rangle )^2=1-(u\cdot w)^2\) as stated in Eq. (20), that therefore is proven. Further, due toFootnote 18 \([\sigma _j,\sigma _k]=2i\varepsilon _{ jkl }\sigma _l\) for every jk,  one has \(\frac{1}{2i}[u\cdot \sigma ,v\cdot \sigma ]= Det \left[ \begin{matrix}\sigma _1&{}\sigma _2&{}\sigma _3\\ u_1&{}u_2&{}u_3\\ v_1&{}v_2&{}v_3\end{matrix}\right] =(u\times v)\cdot \sigma ,\) so that, taking the averages in the states \(\psi _k(w)\) and considering that \(\langle \sigma _k\rangle =w_k\) for \(k=1,2,3\), (21) is proven. Lastly, due to \(\{\sigma _h,\sigma _k\}=2\delta _{ hk }{\hat{1}}\) for every hk,  we have \(\{\sigma \cdot u,\sigma \cdot v\}=2u\cdot v{\hat{1}}\) so that, taking the averages in whichever state, we get Eq. (22) and the proof of the lemma is complete. \(\square \)

4. With the notations of Sect. 3, thanks to the trigonometric identity \(\cos \theta =2\cos ^2\frac{\theta }{2}-1,\) we can write \(\cos \alpha =2p-1,\;\cos \beta =2q-1,\;\cos \gamma =2r-1,\) so that

$$\begin{aligned}&1-\cos ^2\alpha -\cos ^2\beta -\cos ^2\gamma +2\;\cos \alpha \;\cos \beta \;\cos \gamma \\&\quad =1-(2p-1)^2-(2q-1)^2-(2r-1)^2+2(2p-1)(2q-1)(2r-1) \end{aligned}$$

that suitably simplified becomes \(4(4pqr-(p+q+r-1)^2)\) as asserted. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedullo, A. Heisenberg Uncertainty Relations as Statistical Invariants. Found Phys 48, 1546–1556 (2018). https://doi.org/10.1007/s10701-018-0213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0213-9

Keywords

Navigation