Skip to main content
Log in

Neutrino Oscillations with Nil Mass

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton–Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and \(\nu ,\bar{\nu }\) oscillations are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mohapatra, R.N., Smirnov, A.Y.: Neutrino mass and new physics. Ann. Rev. Nucl. Part. Sci. 56, 569–628 (2006). hep-ph/0603118

    Article  ADS  Google Scholar 

  2. Pontecorvo, B.: Mesonium and antimesonium. Sov. Phys. JETP 6, 429–431 (1958)

    ADS  Google Scholar 

  3. Pontecorvo, B.: Mesonium and antimesonium. Zh. Eksp. Teor. Fiz. 33, 549–557 (1957). in Russian

    Google Scholar 

  4. Pontecorvo, B.: Neutrino experiment and the problem of electronic charge. Sov. Phys. JETP 26, 984–988 (1968)

    ADS  Google Scholar 

  5. Pontecorvo, B.: Neutrino experiment and the problem of electronic charge. Zh. Eksp. Teor. Fiz. 53, 1717–1725 (1967). in Russian

    Google Scholar 

  6. Maki, B., Nakagawa, N., Sakata, S.: Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962)

    Article  ADS  MATH  Google Scholar 

  7. Floyd, E.R.: Modified potential and Bohm’s quantum potential Phys. Phys. Rev. D 26, 1339–1347 (1982)

    Article  ADS  Google Scholar 

  8. Floyd, E.R.: Arbitrary initial conditions of hidden variables. Phys. Rev. D 29, 1842–1844 (1984)

    Article  ADS  Google Scholar 

  9. Floyd, E.R.: Closed form solutions for the modified potential. Phys. Rev. D 34, 3246–3249 (1986)

    Article  ADS  Google Scholar 

  10. Faraggi, A.E., Matone, M.: Quantum mechanics from an equivalence principle. Phys. Lett. B 450, 34–40 (1999). hep-th/9705108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Carroll, R.: Some remarks on time, uncertainty, and spin. J. Can. Phys. 77, 319–325 (1999). quant-ph/9903081

    Article  ADS  Google Scholar 

  12. Faraggi, A.E., Matone, M.: The equivalence postulate of quantum mechanics. Int. J. Mod. Phys. A 15, 1869–2017 (2000). hep-th/9809127

    ADS  MathSciNet  MATH  Google Scholar 

  13. Bertoldi, G., Faraggi, A.E., Matone, M.: Equivalence principle, higher dimensional Möbius group and the hidden antisymmetric tensor of quantum mechanics. Class. Quantum Gravity 17, 3965–4006 (2000). hep-th/9909201

    Article  ADS  MATH  Google Scholar 

  14. Floyd, E.R.: Interference, reduced action, and trajectories. Found. Phys. 37, 1386–1402 (2007). quant-ph/0605120v3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Floyd, E.R.: Welcher Weg? A trajectory representation of a quantum Young’s experiment. Found. Phys. 37, 1403–1420 (2007). quant-ph/0605121v3

    Article  ADS  MATH  Google Scholar 

  16. Stueckelberg, E.C.G.: La signification du temps propre en mécanique ondulatoire. Helv. Phys. Acta. 14, 51–80 (1941)

    MathSciNet  MATH  Google Scholar 

  17. Matone, M.: Superluminal neutrinos and a curious phenomenon in the relativistic Hamilton–Jacobi equation (2011). arXiv:1109.6631v2

  18. Matone, M.: Neutrino speed and temperature (2011). arXiv:1111.0270v3

  19. Faraggi, A.E.: OPERA data and the equivalence postulate of quantum mechanics (2011). arXiv:1110.1857v2

  20. Floyd, E.R.: Progress in a trajectory interpretation of the Klein–Gordon equation. Int. J. Theor. Phys. 27, 273–281 (1988)

    Article  MATH  Google Scholar 

  21. Floyd, E.R.: Where and why the generalized Hamilton–Jacobi representation describes microstates of the Schrödinger wave function. Found. Phys. Lett. 9, 489–497 (1996). quant-ph/9707051

    Article  MathSciNet  Google Scholar 

  22. Hecht, C.E., Mayer, J.E.: Extension of the WKB equation. Phys. Rev. 106, 1156–1160 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Milne, W.E.: The numerical determination of characteristic numbers. Phys. Rev. 35, 863–867 (1930)

    Article  ADS  Google Scholar 

  24. Hille, E.: Ordinary Differential Equations in the Complex Plain. Dover, Mineola, NY (1967)

    Google Scholar 

  25. Floyd, E.R.: Quantization, energy quantization, and time parametrization (2015). arXiv:1508.00291

  26. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Poirier, B.: Reconciling semiclassical and Bohmian mechanics. I. Stationary states. J. Chem. Phys. 121, 4501–4515 (2004)

    Article  ADS  Google Scholar 

  28. Dwight, H.B.: Tables of Integrals and Other Mathematical Data, 4th edn. MacMillan, New York (1961) 401.2

  29. Floyd, E.R.: Classical Limits of the Trajectory Interpretation of Quantum Mechanics, Loss of Information and Residual Indeterminacy. Int. J. Mod. Phys. A 15, 1563–1568 (2000). quant-ph/9907092

    Google Scholar 

  30. Dwight, H.B.: 1961 Tables of Integrals and Other Mathematical Data, 4th ed. MacMillan, New York (1961). 858.520, 858.521, 858.524, and 858.525

  31. Floyd, E.R.: OPERA superluminal neutrinos per quantum trajectories (2011). arXiv:1112.4779v2

  32. Horwicz, L.P., Aharonovich, I.: Neutrinos and \(vc\) (2012). arXiv:1203.1632v9

  33. Lacki, J., Ruegg, H., Telegdi, V.: The road to stueckelbergs covariant perturbation theory as illustrated by successive treatments of compton scattering. Stud. Hist. Philos. Mod. Phys. 30, 457–518 (1999). physics/9903023

    Article  MathSciNet  MATH  Google Scholar 

  34. Cohen, A.G., Glashow, S.L.: New constraints on neutrino velocities. Phys. Rev. Lett. 107, 181803 (2011). arXiv:1109.6562

    Article  ADS  Google Scholar 

  35. Floyd, E.R.: A trajectory interpretation of tunneling. An. Fond. L. de Broglie 20, 263–279 (1955)

    MathSciNet  MATH  Google Scholar 

  36. Mikheev, S.P., Smirnov, A.Y.: Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Sov. J. Nucl. Phys. 42, 913–917 (1985)

    Google Scholar 

  37. Wolfenstein, L.: Neutrino oscillations in matter. Phys. Rev. D 17, 2369 (1978)

    Article  ADS  Google Scholar 

  38. Floyd, E.R.: Comments on Mayant’s “A note on Bohm’s interpretation of quantum mechanics”. Phys. Essays 5, 130–132 (1992)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. Floyd.

Appendix: A Outline for a \(\varvec{\psi }\) Representation of Flavor Oscillation

Appendix: A Outline for a \(\varvec{\psi }\) Representation of Flavor Oscillation

A suggested \(\psi \) representation of the quantum trajectories algorithm for neutrino oscillation is now outlined. While the quantum reduced action (a generator of quantum motion) of the quantum trajectories representation accounts for the entanglement between the dichromatic components of the neutrino’s spectrum, a composite \(\psi \), Eq. (8), does the same accounting in the \(\psi \) representation. In both representations, the two spectral components, \(k_{\pm } = \pm k = \pm (E^2 - m^2c^4)^{1/2}/(\hbar c)\), are not manipulated as separate entities but compositely to incorporate their mutual entanglement with each other to describe the dichromatic neutrino’s behavior. As the neutrino is not bound, its \(\psi \) is complex (if bound, then \(\psi \) would be real) [21, 26]. Consequently, its complex \(\psi \) does not have any microstates in the quantum trajectories representation [21]. When encountering an interaction, the \(k_{-}\) spectral component of \(\psi \) is the proxy for the would-be reflected wave. In this manner, the would-be reflected wave may be considered to be a Majorana entity. This would-be reflected wave acts as a secondary, complementary wave that is entangled with the primary would-be incident wave, which is represented by \(k_{+}\) spectral component. In other words, the would-be reflection is already incorporated into the neutrino. The entanglement between the two spectral components produce a dichromatic wave function with compound modulation, Eqs. (8) and (11). In the \(\psi \) representation, the neutrino propagates until it encounters a matching flavor-dependent interaction where the complex dichromatic \(\psi \) and \(\partial _q \psi \) are continuous, \(\mathcal {C}^1\), across the interaction [the wave-length and amplitude modulations are not independent of each other, Eq. (19)]. Flavor oscillations are incorporated into the dichromatic \(\psi \) for the neutrino by compound modulation, Eqs. (11) and (19). As wavelength modulation, W(q), and amplitude modulation, \([\partial _qW(q)]^{-1/2}\), periodically evolve with q [9], the values for the dichromatic \(\psi (q)\), and \(\partial _q W(q)\) change with q to produce periodic flavor oscillation. For a deeper development of this algorithm, the interested reader is invited to review Ref. [35], which discusses the non-relativistic tunneling problem from the points of view of both the quantum trajectories and the \(\psi \) representations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floyd, E.R. Neutrino Oscillations with Nil Mass. Found Phys 47, 42–60 (2017). https://doi.org/10.1007/s10701-016-0040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0040-9

Keywords

Navigation