Skip to main content
Log in

Measurement-Based Quantum Foundations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

I show that quantum theory is the only probabilistic framework that permits arbitrary processes to be emulated by sequences of local measurements. This supports the view that, contrary to conventional wisdom, measurement should not be regarded as a complex phenomenon in need of a dynamical explanation but rather as a primitive—and perhaps the only primitive—operation of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrödinger, E.: Naturwiss. 23, 807 (1935)

    Article  ADS  Google Scholar 

  2. Wigner, E.P.: In: Good, I.J. (ed.) The Scientist Speculates, pp. 168–181. Basic Books, New York (1962)

    Google Scholar 

  3. Wheeler, J.A.: In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 182–213. Princeton University Press, Princeton (1983)

    Google Scholar 

  4. Fuchs, C.A., Schack, R.: In: Accardi, L., et al. (eds.) Foundations of Probability and Physics—5. AIP Conference Proceedings, vol. 1101, pp. 255–259. Springer, Berlin (2009)

    Google Scholar 

  5. Mermin, N.D.: Rev. Mod. Phys. 65, 803 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  6. Everett III, H.: Rev. Mod. Phys. 29, 454 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  7. Ghirardi, G.C., Rimini, A., Weber, T.: Phys. Rev. D 34, 470 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Caves, C.M., Fuchs, C.A., Schack, R.: Phys. Rev. A 65, 022305 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  10. Timpson, C.G.: Stud. Hist. Philos. Mod. Phys. 39, 579 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fuchs, C.A., Schack, R.: Found. Phys. (2010). doi:10.1007/s10701-009-9404-8

    Google Scholar 

  12. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, New York (2000)

    MATH  Google Scholar 

  13. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  14. Hartle, J.B.: Am. J. Phys. 36, 704 (1968)

    Article  ADS  Google Scholar 

  15. Bub, J.: Stud. Hist. Philos. Mod. Phys. 38, 232 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mermin, N.D.: Quantum Inf. Process. 5, 239 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rudolph, T.: Quantum mechanics without unitary evolution (2006) (unpublished)

  18. Raussendorf, R., Briegel, H.J.: Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  19. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., den Nest, M.V.: Nat. Phys. 5, 19 (2009)

    Article  Google Scholar 

  20. Page, D.N., Wootters, W.K.: Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  21. Wootters, W.K.: Int. J. Theor. Phys. 23, 701 (1984)

    Article  MathSciNet  Google Scholar 

  22. Rovelli, C.: Phys. Rev. D 42, 2638 (1990)

    Article  ADS  Google Scholar 

  23. Poulin, D.: Int. J. Theor. Phys. 45, 1189 (2006)

    Article  MathSciNet  Google Scholar 

  24. Barbour, J.B.: Class. Quantum Gravity 11, 2853 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  25. Hellmann, F., Mondragon, M., Perez, A., Rovelli, C.: Phys. Rev. D 75, 084033 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. Grinbaum, A.: Br. J. Philos. Sci. 58, 387 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rau, J.: Ann. Phys. 324, 2622 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Zeilinger, A.: Found. Phys. 29, 631 (1999)

    Article  MathSciNet  Google Scholar 

  29. Birkhoff, G., von Neumann, J.: Ann. Math. 37, 823 (1936)

    Article  Google Scholar 

  30. Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley, Reading (1968)

    MATH  Google Scholar 

  31. Wilce, A.: In: Coecke, B., Moore, D., Wilce, A. (eds.) Current Research in Operational Quantum Logic: Algebras, Categories, Languages. Fundamental Theories of Physics, vol. 111, pp. 81–114. Kluwer, Dordrecht (2000)

    Google Scholar 

  32. Cox, R.T.: Am. J. Phys. 14, 1 (1946)

    Article  MATH  ADS  Google Scholar 

  33. Hardy, L.: Foliable operational structures for general probabilistic theories. arXiv:0912.4740v1 (2009)

  34. Hardy, L.: Stud. Hist. Philos. Mod. Phys. 34, 381 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Barrett, J.: Phys. Rev. A 75, 032304 (2007)

    Article  ADS  Google Scholar 

  36. D’Ariano, G.M.: In: Bokulich, A., Jaeger, G. (eds.) Philosophy of Quantum Information and Entanglement. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  37. Dakic, B., Brukner, C.: Quantum theory and beyond: is entanglement special? arXiv:0911.0695v1 (2009)

  38. Caves, C.M., Fuchs, C.A., Schack, R.: J. Math. Phys. 43, 4537 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Renner, R.: Nat. Phys. 3, 645 (2007)

    Article  Google Scholar 

  40. Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics, vol. 190. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  41. Misra, B., Sudarshan, E.C.G.: J. Math. Phys. 18, 756 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  42. Belinfante, J.G.F.: J. Math. Phys. 17, 285 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Fivel, D.I.: Phys. Rev. A 50, 2108 (1994)

    Article  ADS  Google Scholar 

  44. Wilce, A.: Four and a half axioms for finite dimensional quantum mechanics. arXiv:0912.5530v1 (2009)

  45. Barut, A.O., Raczka, R.: Theory of Group Representations and Applications, 2nd edn. World Scientific, Singapore (1986)

    MATH  Google Scholar 

  46. Butterfield, J. (ed.): The Arguments of Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  47. Silagadze, Z.K.: Acta Phys. Polon. B 36, 2887 (2005)

    ADS  Google Scholar 

  48. The clock and the quantum: time and quantum foundations. http://pirsa.org/C08023 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Rau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, J. Measurement-Based Quantum Foundations. Found Phys 41, 380–388 (2011). https://doi.org/10.1007/s10701-010-9427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9427-1

Keywords

Navigation