Skip to main content
Log in

Nonquantum Gravity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

One of the great challenges for 21st century physics is to quantize gravity and generate a theory that will unify gravity with the other three fundamental forces of nature. This paper takes the (heretical) point of view that gravity may be an inherently classical, i.e., nonquantum, phenomenon and investigates the experimental consequences of such a conjecture. At present there is no experimental evidence of the quantum nature of gravity and the likelihood of definitive tests in the future is not at all certain. If gravity is, indeed, a nonquantum phenomenon, then it is suggested that evidence will most likely appear at mesoscopic scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weyl, H.: Gravitation and electricity. Translated from Sitz. Preuss. Akad. Wissen. (1918) In: The Principle of Relativity, pp. 201–216 (1923). (Reprinted by Dover, New York (1952))

  2. Kaluza, T.: Zum unitstaetsproblem in der physik. Sitz.ber. Preuss. Akad. Wiss., 966–972 (1921)

  3. Eddington, A.: The Mathematical Theory of Relativity. Cambridge University Press, Cambridge (1923). Chap. 7

    MATH  Google Scholar 

  4. Green, M., Schwarz, J., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  5. Ashtekar, A., Rovelli, C.: Connections, loops and quantum general relativity. Class. Quantum Gravity 9, S3–S12 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Moller, C.: Les Theories Relativistes de la Gravitation. In: Lichnerowicz, A., Tonnelat, M.-A. (eds.) Colloques Internationaux CNRS, vol. 91. CNRS, Paris (1962)

    Google Scholar 

  7. Rosenfeld, L.: On quantization of fields. Nucl. Phys. 40, 353–356 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carlip, S.: Is quantum gravity necessary? Class. Quantum Gravity 25, 154010 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zurek, W.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hall, M., Reginatto, M.: Interacting classical and quantum ensembles. Phys. Rev. A 72, 062109 (2005)

    Article  ADS  Google Scholar 

  11. Weinberg, S., Witten, E.: Limits on massless particles. Phys. Lett. B 96, 59–82 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  12. Barceló, C., Visser, M., Liberati, S., Ahluwalia, D.: Einstein Gravity as an Emergent Phenomenon? Int. J. Mod. Phys. D 10, 799–806 (2001)

    Article  MATH  Google Scholar 

  13. Dyson, F.: The world on a string, review of The Fabric of the Cosmos: Space, Time, and the Texture of Reality by Brian Greene. New York Rev. Books 51(8) (2004)

  14. Rothman, T., Boughn, S.: Can gravitons be detected? Found. Phys. 36, 1801–1825 (2006)

    Article  MATH  ADS  Google Scholar 

  15. Boughn, S., Rothman, T.: Aspects of graviton detection: graviton emission and absorption by atomic hydrogen. Class. Quantum Gravity 23, 5839–5852 (2006)

    Article  MATH  ADS  Google Scholar 

  16. Smolin, L.: On the intrinsic entropy of the gravitational field. Gen. Relativ. Gravit. 17, 417–437 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. Misner, C., Thorne, K., Wheeler, J.: Gravitation. Freeman, New York (1973). Chap. 37

    Google Scholar 

  18. Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983)

    Article  ADS  Google Scholar 

  19. Hackermuller, L., Uttenthaler, S., Hornberger, K., Reiger, E., Brezger, B., Zeilinger, A., Arndt, M.: Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003)

    Article  ADS  Google Scholar 

  20. Lamine, B., Herve, R., Lambrecht, A., Reynaud, S.: Ultimate decoherence border for matter-wave interferometry. Phys. Rev. Lett. 96, 050405 (2006)

    Article  ADS  Google Scholar 

  21. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 8, 581–600 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  22. Diosi, L.: Model for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 42, 1165–1174 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ghirardi, G., Grassi, R., Rimini, A.: Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057–1064 (1990)

    Article  ADS  Google Scholar 

  24. Zurek, W.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2005)

    Article  ADS  Google Scholar 

  26. Joos, E.: In: Blanchard, P., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I. (eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems. In: Lecture Notes in Physics, No. 538, p. 14. Springer, New York (2000)

    Google Scholar 

  27. Page, D., Geilker, C.: Indirect evidence for quantum gravity. Phys. Rev. Lett. 47, 979–982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  28. Marshall, W., Simon, C., Penrose, R., Bouwneester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. Armour, A., Blencowe, M., Schwab, K.: Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. Phys. Rev. Lett. 88, 148301 (2002)

    Article  ADS  Google Scholar 

  30. Myatt, C., : Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000)

    Article  ADS  Google Scholar 

  31. Hackermueller, L., Hornberger, K., Brezger, B., Zeilinger, A., Arndt, M.: Nature 427, 711–714 (2003)

    Article  ADS  Google Scholar 

  32. Eppley, K., Hannah, E.: The necessity of quantizing the gravitational field. Found. Phys. 7, 51–68 (1977)

    Article  ADS  Google Scholar 

  33. Terno, D.: Inconsistency of quantum-classical dynamics. Found. Phys. 36, 102–111 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Caro, J., Salcedo, L.: Impediments to mixing classical and quantum dynamics. Phys. Rev. A 60, 842–852 (1999)

    Article  ADS  Google Scholar 

  35. Peres, A., Terno, D.: Hybrid classical-quantum dynamics. Phys. Rev. A 63, 022101 (2001)

    Article  ADS  Google Scholar 

  36. Padmanabhan, T.: Is gravity an intrinsically quantum phenomenon? Mod. Phys. Lett. A 17, 1147–1158 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Mattingly, J.: Why Eppley and Hannah’s thought experiment fails. Phys. Rev. D 73, 064025 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  39. Albers, M., Kiefer, C., Reginatto, M.: Measurement analysis and quantum gravity. Phys. Rev. D 73, 064051 (2008)

    Article  ADS  Google Scholar 

  40. Schiff, L.: Quantum Mechanics, 3rd edn. McGraw-Hill, New York (1968). Chap. 11

    Google Scholar 

  41. Ford, L.: Gravitational radiation by quantum systems. Ann. Phys. 144, 238–248 (1982)

    Article  ADS  Google Scholar 

  42. Pound, R., Rebka, G.: Apparent weight of photons. Phys. Rev. Lett. 4, 337–341 (1960)

    Article  ADS  Google Scholar 

  43. Salzman, P., Carlip, S.: A possible experimental test of quantized gravity. arXiv:gr-qc/0606120 (2006)

  44. van Wezel, J., Oosterkamp, T., Zaanen, J.: Towards an experimental test of gravity-induced quantum state reduction. Philos. Mag. 88, 1005–1026 (2008)

    Article  ADS  Google Scholar 

  45. Stapp, H.: The Copenhagen interpretations. Am. J. Phys. 40, 1098–1116 (1972)

    Article  ADS  Google Scholar 

  46. Bekenstein, J.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  47. Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  MathSciNet  Google Scholar 

  48. Preskill, J.: Do black holes destroy information? arXiv:hep-th/9209058 (1992)

  49. Hawking, S.: Information loss in black holes. Phys. Rev. D 72, 0840013 (2005)

    Article  MathSciNet  Google Scholar 

  50. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 09, 120 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  51. Bahcall, N., Ostriker, J., Perlmutter, S., Steinhardt, P.: The cosmic triangle: Revealing the state of the universe. Science 284, 1481–1488 (1999)

    Article  ADS  Google Scholar 

  52. Kolb, E., Matarrese, S., Riotto, A.: On cosmic acceleration without dark energy. New J. Phys. 8, 322 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Boughn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boughn, S. Nonquantum Gravity. Found Phys 39, 331–351 (2009). https://doi.org/10.1007/s10701-009-9282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9282-0

Keywords

Navigation