Skip to main content
Log in

Energy for Two-electron Quantum Dots: The Quantization Rule Approach

  • Published:
Foundations of Physics Aims and scope Submit manuscript

The energy spectra for two electrons in a parabolic quantum dot are calculated by the quantization rule approach. The numerical results are in excellent agreement with the results by the method of integrating directly the Schrödinger equation, and better than those by the WKB method and the WKB-DP method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacak L., Hawrylak P., Wójs A., (1998). Quantum Dots. Springer-Verlag, Berlin

    Google Scholar 

  2. Ashoori R.C., (1996). “Electrons in artificial atoms”. Nature (Lond.) 379, 413

    Article  ADS  Google Scholar 

  3. Yoffe A.D., (2001). “Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems”. Adv. Phys. 50, 1

    Article  ADS  Google Scholar 

  4. Kohn W., (1961). “Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas”. Phys. Rev. 123: 1242

    Article  MATH  ADS  Google Scholar 

  5. Maksym P.A., (1996). “Eckardt frame theory of interacting electrons in quantum dots”. Phys. Rev. B 53: 10871

    Article  ADS  Google Scholar 

  6. Ashoori R.C., Stormer H.L., Weiner J.S., Pfeiffer L.N., Baldwin K.W., West K.W., (1993). “N-electron ground state energies of a quantum dot in magnetic field”. Phys. Rev. Lett. 71, 613

    Article  ADS  Google Scholar 

  7. Maksym P.A., Chakraborty T., (1990). “Quantum dots in a magnetic field: role of electronelectron interaction”. Phys. Rev. Lett. 65, 108

    Article  ADS  Google Scholar 

  8. Yannouleas C., Landman U., (2000). “Collective and independent-Particle motion in two-Electron artificial atoms”. Phys. Rev. Lett. 85: 1726

    Article  ADS  Google Scholar 

  9. Pfannkuche D., Gudmundsson V., Maksym P.A., (1993). “Comparison of a Hartree, a Hartree-Fock, and an exact treatment of quantum-dot helium”. Phys. Rev. B 47: 2244

    Article  ADS  Google Scholar 

  10. Ciftja O., Anil Kumar A., (2004). “Ground state of two-dimensional quantum-dot helium in zero magnetic field: perturbation, diagonalization and variational theory”. Phys. Rev. B 70: 205326

    Article  ADS  Google Scholar 

  11. Merkt U., Huser J., Wagner M., (1991). “Energy spectra of two electrons in a harmonic quantum dot”. Phys. Rev. B 43: 7320

    Article  ADS  Google Scholar 

  12. Harju A., Siljamäki S., Nieminen R.M., (2002). “Wigner molecules in quantum dots: a quantum Monte Carlo Study”. Phys. Rev. B 65: 075309

    Article  ADS  Google Scholar 

  13. Reusch B., Grabert H., (2003). “Unrestricted Hartree-Fock for quantum dots”. Phys. Rev. B 68: 045309

    Article  ADS  Google Scholar 

  14. Pino R., Villalba V.M., (2001). “Calculation of the energy spectrum of a two-electron spherical quantum dot”. J. Phys. Condens. Matter 13: 11651

    Article  ADS  Google Scholar 

  15. Lee W.C., Lee T.K., (2002). “Low-energy states in a quantum dot obtained by the orbital integration method”. J. Phys. Condens. Matter 14: 1045

    Article  ADS  Google Scholar 

  16. Nazmitdinov R.G., Simonović N.S., Rost J.M., (2002). “Semiclassical analysis of a two-electron quantum dot in a magnetic field: dimensional phenomena”. Phys. Rev. B 65: 155307

    Article  ADS  Google Scholar 

  17. Chen W., Hong T.M., Lin H.H., (2003). “Semiclassical quantization rule for the bound-state spectrum in quantum dots: scattering phase approximation”. Phys. Rev. B 68: 205104

    Article  ADS  Google Scholar 

  18. Kocsis B., Palla G., Cserti J., (2005). “Quantum and semiclassical study of magnetic quantum dots”. Phys. Rev. B 71: 075331

    Article  ADS  Google Scholar 

  19. Johnson N.F., (1995). “Quantum dots: few-body, low dimensional systems”. J. Phys. Condens. Matter 7, 965

    Article  ADS  Google Scholar 

  20. Reimann S.M., Manninen M., (2002). “Electronic structure of quantum dots”. Rev. Mod. Phys. 74: 1283

    Article  ADS  Google Scholar 

  21. García-Castelán R.M.G., Choe W.S., Lee Y.C., (1998). “Correlation energies for two interacting electrons in a harmonic quantum dot”. Phys. Rev. B 57: 9792

    Article  ADS  Google Scholar 

  22. Klama S., Mishchenko E.G., (1998). “Two electrons in a quantum dot: a semiclassical approach”. J. Phys. Condens. Matter 10: 3411

    Article  ADS  Google Scholar 

  23. Langer R.E., (1937). “On the connection formulas and the solutions of the wave equation”. Phys. Rev. 51, 669

    Article  MATH  ADS  Google Scholar 

  24. Brack M., Bhaduri R.K., (1997). Semiclassical Physics. Addison-Wesley, Reading

    MATH  Google Scholar 

  25. Ma Z.Q., Xu B.W., (2005). “Quantization rules for bound states of the Schödinger equation”. Int. J. Modern Phys. E 14, 599

    Article  ADS  Google Scholar 

  26. Ma Z.Q., Xu B.W., (2005). “Quantum correction in exact quantization rules”. Europhys. Lett. 69, 685

    Article  Google Scholar 

  27. Xu T., Cao Z.Q., Ou Y.C., Qishun Shen, (2005). “Two-dimensional quantization rule for the bound-state spectra in quantum dots”. Phys. Lett. A 341, 308

    Article  ADS  Google Scholar 

  28. Puente A., Serra L., Nazmitdinov R.G., (2004). “Roto-vibrational spectrum and Wigner crystallization in two-electron parabolic quantum dots”. Phys. Rev. B 69: 125315

    Article  ADS  Google Scholar 

  29. Cooper F., Khare A., Sukhatme U., (1995). “Supersymmetry and quantum mechanics”. Phys. Rep. 251, 267

    Article  MathSciNet  Google Scholar 

  30. Friedrich H., Trost J., (1996). “Phase loss in WKB waves due to reflection by a potential”. Phys. Rev. Lett. 76: 4869

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Hruška M., Keung W.Y., Sukhatme U., (1997). “Accuracy of semiclassical methods for shapeinvariant potentials”. Phys. Rev. A 55: 3345

    Article  MathSciNet  ADS  Google Scholar 

  32. Yannouleas C., Landman U., (2003). “Two-dimensional quantum dots in high magnetic fields: rotating-electron-molecule versus composite-fermion approach”. Phys. Rev. B 68: 035326

    Article  ADS  Google Scholar 

  33. Partoens B., Matulis A., Peeters F.M., (1999). “Two-electron artificial molecule”. Phys. Rev. B 59: 1617

    Article  ADS  Google Scholar 

  34. Janssens K.L., Partoens B., Peeters F.M., (2002). “Single and vertically coupled type-II quantum dots in a perpendicular magnetic field: exciton ground-state properties”. Phys. Rev. B 66: 075314

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yan Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, XY. Energy for Two-electron Quantum Dots: The Quantization Rule Approach. Found Phys 36, 1884–1892 (2006). https://doi.org/10.1007/s10701-006-9083-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9083-7

Keywords

Navigation