Skip to main content
Log in

A Topological Approach to Infinity in Physics and Biophysics

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Physical and biological measurements might display range values extending towards infinite. The occurrence of infinity in equations, such as the black hole singularities, is a troublesome issue that causes many theories to break down when assessing extreme events. Different methods, such as re-normalization, have been proposed to avoid detrimental infinity. Here a novel technique is proposed, based on geometrical considerations and the Alexander Horned sphere, that permits to undermine infinity in physical and biophysical equations. In this unconventional approach, a continuous monodimensional line becomes an assembly of countless bidimensional lines that superimpose in quantifiable knots and bifurcations. In other words, we may state that Achilles leaves the straight line and overtakes the turtle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Modified from: CFD Moduule. https://www.technic.com.au/products/cfd/ (Retrieved 2018). c One of the feasible modifications of the Alexander horned sphere. Here two opposite logistic plots are inserted into the branched section of the horned torus

Similar content being viewed by others

References

  • Alexander, J. W. (1924). An example of a simply connected surface bounding a region which is not simply connected. Proceedings of the National Academy of Sciences, 10, 8–10.

    Article  Google Scholar 

  • Aristotle (1980). Physics, 2 volumes, trans. Cornford and Wickstead. Loeb Classical Library, Cambridge, MA: Harvard University Press and Heinemann.

  • Asselmeyer-Maluga, T. (2018). Hyperbolic groups, 4-manifolds and Quantum Gravity. arXiv:1811.04464.

  • Bell, J. L. (2005). The continuous and the infinitesimal in mathematics and philosophy. Milan: Polimetrica S.A.

    Google Scholar 

  • Bergmann, P. G. (1989). Quantum gravity at spatial infinity. General Relativity and Gravitation, 21(3), 271–278.

    Article  Google Scholar 

  • Bradwardine, T. (1328–1335). Tractatus de continu. Trans by Murdoch JE. Quoted in Edward Grant ed., a source book in Medieval science. Cambridge, Massachusetts: Harvard University Press, 1974.

  • Bridges, D. (1999). Constructive mathematics: A foundation for computable analysis. Theoretical Computer Science, 219, 95–109.

    Article  Google Scholar 

  • Busch, P. (2008). The time-energy uncertainty relation. Lecture Notes in Physics, 734, 73–105. https://doi.org/10.1007/978-3-540-73473-4_3.

    Article  Google Scholar 

  • Calixto, M., Guerrero, J., & Roşca, D. (2015). Wavelet transform on the torus: A group theoretical approach. Applied and Computational Harmonic Analysis, 38(1), 32–49. https://doi.org/10.1016/j.acha.2014.03.001.

    Article  Google Scholar 

  • Cantor, G. (1961). Contributions to the founding of the theory of transfinite numbers. New York: Dover.

    Google Scholar 

  • de Cusa, N. (1440). De docta ignorantia. English translation in Bond, H. Lawrence (ed.), Nicholas of Cusa: Selected Spiritual Writings, Classics of Western Spirituality. New York: Paulist Press, 1997.

  • Dedekind, R. (1963). Essays on the theory of numbers. New York: Dover.

    Google Scholar 

  • Di Concilio, A., Guadagni, C., Peters, J. F., & Ramanna, S. (2018). Descriptive proximities. Properties and interplay between classical proximities and overlap. Mathematics in Computer Science, 12(1), 91–106. https://doi.org/10.1007/s11786-017.0328-y.

    Article  Google Scholar 

  • Ehresmann, C. (1950). Les connexion s infinitésimales dans un espace fibré différentiable (pp. 29–55). Bruxelles: Colloque de Toplogie.

    Google Scholar 

  • Frauendiener, J. (2000). Conformal infinity. Living Reviews in Relativity, 3, 4.

    Article  Google Scholar 

  • Frankel, T. (2011). The geometry of physics: An introduction. Cambridge University Press; IIIrd Ed. ISBN-13: 978-1107602601.

  • Guadagni, C. (2014). Bornological Convergences on Local Proximity Spaces and Metric Spaces. Ph.D. Thesis, Universitá degli Studi di Salerno.

  • Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift f¨ur Physik, 43: 172–198.

  • Iyer and Petters. (2007). Light’s bending angle due to black holes: from the photon sphere to infinity. General Relativity and Gravitation, 39, 1563–1582.

    Article  Google Scholar 

  • Ji, Z., Natarajan, A., Vidick, T., Wright, J., & Yuen, H. (2020). MIP*=RE. arXiv:2001.04383.

  • Langevin, P. (1908). Sur la théorie du movement brownien. Comptes rendus de l'Académie des Sciences Paris, 146, 530–533.

    Google Scholar 

  • Lawvere, F. W. (1980). Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 21, 377–392.

    Google Scholar 

  • Levi-Civita, T. (1917). Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana. Rendiconti del Circolo Matematico di Palermo, 42, 73–205. https://doi.org/10.1007/bf03014898.

    Article  Google Scholar 

  • Livingston, C. (2003). Enhanced linking numbers. The American Mathematical Monthly, 110(5), 361–385. https://doi.org/10.1080/00029890.2003.11919975.

    Article  Google Scholar 

  • Mandelstam, L., & Tamm, I. (1945). The uncertainty relation between energy and time in nonrelativistic quantum mechanics. Journal of Physics (USSR), 9, 249–254.

    Google Scholar 

  • Naimpally, S. A., & Peters, J. F. (2013). Topology with applications. topological spaces via near and far. World Scientific Pub. Co., Ltd., Singapore, xvi+277 pp. ISBN: 978-981-4407-65-6, MR3075111.

  • Peters, J. F. (2020a). Computational geometry, topology and physics of digital images with applications Shape complexes, optical vortex nerves and proximities (p. xxv+440). Switzerland: Springer. https://doi.org/10.1007/978-3-030-22192-8.

    Book  Google Scholar 

  • Peters, J. F. (2020b). Ribbon complexes and their approximate descriptive proximities. Ribbon & vortex nerves, Betti numbers and planar division, Bull. Allahabad Math. Soc., in press; also, arXiv 1911.09014v6.

  • Penrose, R. (1976). Nonlinear gravitons and curved tensor theory. General Relativity and Gravitation, 7, 31–52.

    Article  Google Scholar 

  • Poincaré, H. (1946). Foundations of science, trans. G. Halsted, New York: Science Press.

  • Robinson, A. (1996). Non-standard analysis. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Sengupta, B., Tozzi, A., Coray, G. K., Douglas, P. K., & Friston, K. J. (2016). Towards a neuronal gauge theory. PLOS Biology, 14(3), e1002400. https://doi.org/10.1371/journal.pbio.1002400.

    Article  Google Scholar 

  • Hooft, G. T. (1971). Renormalizable Lagrangians for massive Yang-Mills fields. Nuclear Physics B, 35, 167–188.

    Article  Google Scholar 

  • Tozzi, A., Peters, J. F., Fingelkurts, A. A., Fingelkurts, A. A., & Marijuán, P. C. (2017). Topodynamics of metastable brains. Physics of Life Reviews, 21, 1–20. https://doi.org/10.1016/j.plrev.2017.03.001.

    Article  Google Scholar 

  • Tozzi, A., Peters, J. F., Fingelkurts, A., Fingelkurts, A., & Perlovsky, L. (2018). Syntax meets semantics during brain logical computations. ProgrBiophys Mol Biol, 140, 133–141. https://doi.org/10.1016/j.pbiomolbio.2018.05.010.

    Article  Google Scholar 

  • Tozzi, A., & Peters, J. F. (2019a). Points and lines inside our brains. Cognitive Neurodynamics. https://doi.org/10.1007/s11571-019-09539-8.

    Article  Google Scholar 

  • Tozzi, A., & Peters, J. F. (2019b). Points and lines inside our brains. Cognitive Neurodynamics, 13(5), 417–428. https://doi.org/10.1007/s11571-019-09539-8.

    Article  Google Scholar 

  • Wang, B. Q., Zhou, W. G., & X-H., (2015). A local wavelet transform on the torus T2. International Journal of Wavelets, Multiresolution and Information Processing, 13(04), 1550027. https://doi.org/10.1142/S0219691315500277.

    Article  Google Scholar 

  • Waismann, F. (1979). Wittgenstein and the Vienna Circle: Conversations. Rowman & Littlefield. ISBN-13: 978-0064973106.

  • Wang, W., Wallin, M., & Lidmar, J. (2018). Chaotic temperature and bond dependence of four-dimensional Gaussian spin glasses with partial thermal boundary conditions. Physical Review E, 98, 062122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Tozzi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozzi, A., Peters, J.F. A Topological Approach to Infinity in Physics and Biophysics. Found Sci 26, 245–255 (2021). https://doi.org/10.1007/s10699-020-09674-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-020-09674-0

Keywords

Navigation