Skip to main content
Log in

Stochastic programming for flexible global supply chain planning

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

When ocean transportation is used, possible disruptions both at sea and on land should be taken into account in the planning process of the affected supply chain. In this paper, a framework to enable flexible global supply chain operational planning in stochastic environments is presented. In order to cope with unexpected events like natural or man-made disasters, flexible international long-distance transportation modes and postponement strategies are taken into account in our supply chain model. In order to balance supply chain costs and the flexibility of supply chains, a two-stage multi-scenario stochastic programming model is developed where the stochastic events are represented by corresponding scenarios. High quality solutions of all our problem instances are generated by using a Python based stochastic programming framework to solve the model. Finally, managerial insights related to flexible supply chain planning in stochastic environments are derived from our computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that the abbreviation SC is used for both the singular and plural cases.

  2. This is a sample of a SC. Arrows represent the material/component/product flow directions. Dashed lines indicate vulnerable transportation links. Dashed boxes indicate vulnerable SC nodes.

References

  • Baker KR (1977) An experimental study of the effectiveness of rolling schedules in production planning. Decis Sci 8(1):19–27

    Article  Google Scholar 

  • Barnes P, Oloruntoba R (2005) Assurance of security in maritime supply chains: conceptual issues of vulnerability and crisis management. J Int Manag 11(4):519–540

    Article  Google Scholar 

  • Benfield A (2016) 2015 annual global climate and catastrophe report. http://thoughtleadership.aonbenfield.com/Documents/20160113-ab-if-annual-climate-catastrophe-report.pdf. Accessed 19 Feb 2016

  • Brouer BD, Dirksen J, Pisinger D, Plum CE, Vaaben B (2013) The Vessel Schedule Recovery Problem (VSRP)—A MIP model for handling disruptions in liner shipping. Eur J Oper Res 224(2):362–374

    Article  MATH  Google Scholar 

  • Cariou P (2011) Is slow steaming a sustainable means of reducing \(\text{ CO }_2\) emissions from container shipping? Transp Res D Transp Environ 16(3):260–264

    Article  Google Scholar 

  • Ceglowski J, Golub SS (2012) Does China still have a labor cost advantage? Glob Econ J 12(3). doi:10.1515/1524-5861.1874

  • Chen F, Drezner Z, Ryan JK, Simchi-Levi D (2000a) Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information. Manag. Sci. 46(3):436–443

    Article  MATH  Google Scholar 

  • Chen F, Ryan JK, Simchi-Levi D (2000b) The impact of exponential smoothing forecasts on the bullwhip effect. Nav Res Logist 47(4):269–286

    Article  MathSciNet  MATH  Google Scholar 

  • Craighead CW, Blackhurst J, Rungtusanatham MJ, Handfield RB (2007) The severity of supply chain disruptions: design characteristics and mitigation capabilities. Decis Sci 38(1):131–156

    Article  Google Scholar 

  • Dadfar D, Schwartz F, Voß S (2012) Risk management in global supply chains—hedging for the big bang? In: Mak HY, Lo H (eds) Transportation & logistics management. Proceedings of the 17th international HKSTS conference (HKSTS 2012), Hong Kong, pp 159–166

  • Escudero LF, Kamesam PV, King AJ, Wets RJ (1993) Production planning via scenario modelling. Ann Oper Res 43(6):309–335

    Article  MathSciNet  MATH  Google Scholar 

  • Fahimnia B, Tang CS, Davarzani H, Sarkis J (2015) Quantitative models for managing supply chain risks: a review. Eur J Oper Res 247(1):1–15

    Article  MATH  Google Scholar 

  • Fan Y, Schwartz F, Voß S (2014) Flexible supply chain design under stochastic catastrophic risks. In: Kersten W, Blecker T, Ringle C (eds) Next generation supply chains. Epubli, Berlin, pp 379–406

    Google Scholar 

  • Fana Y, Schwartza F, Voßa S (2016) Flexible supply chain planning based on variable transportation modes. Int J Prod Econ. doi:10.1016/j.ijpe.2016.08.020

  • Fan Y, Heilig L, Voß S (2015) Supply chain risk management in the era of big data. In: Marcus A (ed) LNCS, vol 9186. Springer, Basel, pp 283–294

  • Finch P (2004) Supply chain risk management. Supply Chain Manag Int J 9(2):183–196

    Article  Google Scholar 

  • Gaver DP (1963) Time to failure and availability of paralleled systems with repair. IEEE Trans Reliab 12(2):30–38

    Article  Google Scholar 

  • Hart WE, Laird C, Watson JP, Woodruff DL (2012) Pyomo-optimization modeling in Python. Springer, New York

    Book  MATH  Google Scholar 

  • Heckmann I, Comes T, Nickel S (2015) A critical review on supply chain risk-definition, measure and modeling. Omega 52:119–132

    Article  Google Scholar 

  • Ho W, Zheng T, Yildiz H, Talluri S (2015) Supply chain risk management: a literature review. Int J Prod Res 53(16):5031–5069

    Article  Google Scholar 

  • Jüttner U, Peck H, Christopher M (2003) Supply chain risk management: outlining an agenda for future research. Int J Logist Res Appl 6(4):197–210

    Article  Google Scholar 

  • Kaganovich M (1996) Rolling planning: optimality and decentralization. J Econ Behav Organ 29(1):173–185

    Article  Google Scholar 

  • Kleindorfer PR, Saad GH (2005) Managing disruption risks in supply chains. Prod Oper Manag 14(1):53–68

    Article  Google Scholar 

  • Lam JSL (2012) Risk management in maritime logistics and supply chains. In: Song D-W, Panayides P (eds) Maritime logistics: contemporary issues. Emerald, Bingley, pp 117–132

  • Lam JSL, Bai X (2016) A quality function deployment approach to improve maritime supply chain resilience. Transp Res E Logist Transp Rev 92:16–27

  • Li H, Li L, Wu B, Xiong Y (2012) The end of cheap Chinese labor. J Econ Perspect 26(4):57–74

    Article  Google Scholar 

  • Loh HS, Thai VV (2016) Managing port-related supply chain disruptions (PSCDs): a management model and empirical evidence. Marit Policy Manag 43(4):436–455

    Article  Google Scholar 

  • Løkketangen A, Woodruff DL (1996) Progressive hedging and tabu search applied to mixed integer (0, 1) multistage stochastic programming. J Heuristics 2(2):111–128

    Article  MATH  Google Scholar 

  • Maloni M, Paul JA, Gligor DM (2013) Slow steaming impacts on ocean carriers and shippers. Marit Econ Logist 15(2):151–171

    Article  Google Scholar 

  • Manuj I, Mentzer JT (2008) Global supply chain risk management strategies. Int J Phys Distrib Log Manag 38(3):192–223

    Article  Google Scholar 

  • Meng Q, Wang S, Andersson H, Thun K (2013) Containership routing and scheduling in liner shipping: overview and future research directions. Transp Sci 48(2):265–280

    Article  Google Scholar 

  • Meyer J, Stahlbock R, Voß S (2012) Slow steaming in container shipping. In: 2012 45th Hawaii international conference on system sciences (HICSS). IEEE, pp. 1306–1314

  • Nagashima M, Wehrle FT, Kerbache L, Lassagne M, Wagner B (2015) Impacts of adaptive collaboration on demand forecasting accuracy of different product categories throughout the product life cycle. Supply Chain Manag Int J 20(4):415–433

    Article  Google Scholar 

  • Notteboom TE (2006) The time factor in liner shipping services. Marit Econ Log 8(1):19–39

    Article  Google Scholar 

  • Parlar M (1997) Continuous-review inventory problem with random supply interruptions. Eur J Oper Res 99(2):366–385

    Article  MATH  Google Scholar 

  • Parlar M, Berkin D (1991) Future supply uncertainty in EOQ models. Nav Res Log 38(1):107–121

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar RT, Wets RJB (1991) Scenarios and policy aggregation in optimization under uncertainty. Math Oper Res 16(1):119–147

    Article  MathSciNet  MATH  Google Scholar 

  • Sahin F, Robinson EP (2005) Information sharing and coordination in make-to-order supply chains. J Oper Manag 23(6):579–598

    Article  Google Scholar 

  • Sahin F, Robinson EP, Gao LL (2008) Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain. Int J Prod Econ 115(2):528–541

    Article  Google Scholar 

  • Sahin F, Narayanan A, Robinson EP (2013) Rolling horizon planning in supply chains: review, implications and directions for future research. Int J Prod Res 51(18):5413–5436

    Article  Google Scholar 

  • Sethi S, Sorger G (1991) A theory of rolling horizon decision making. Ann Oper Res 29(1):387–415

    Article  MathSciNet  MATH  Google Scholar 

  • So KC, Zheng X (2003) Impact of supplier’s lead time and forecast demand updating on retailer’s order quantity variability in a two-level supply chain. Int J Prod Econ 86(2):169–179

    Article  Google Scholar 

  • Spitter JM (2005) Rolling schedule approaches for supply chain operations planning. Technische Universiteit Eindhoven, Eindhoven

    Google Scholar 

  • Szal A (2016) Report: China labor costs only 4 percent below U.S. http://www.manufacturing.net/news/2016/03/report-china-labor-costs-only-4-percent-below-us. Accessed 04 July 2016

  • Tang CS (2006) Perspectives in supply chain risk management. Int J Prod Econ 103(2):451–488

    Article  Google Scholar 

  • Tang O, Musa SN (2011) Identifying risk issues and research advancements in supply chain risk management. Int J Prod Econ 133(1):25–34

    Article  Google Scholar 

  • Watson JP, Woodruff DL, Hart WE (2012) PySP: modeling and solving stochastic programs in Python. Math Program Comput 4(2):109–149

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson MC (2007) The impact of transportation disruptions on supply chain performance. Transp Res E Log Transp Rev 43(4):295–320

    Article  Google Scholar 

  • Zhen S (2015) Manufacturers step up search for low cost alternative to China. http://www.scmp.com/business/companies/article/1863709/manufacturers-step-search-low-cost-alternative-china. Accessed 16 June 2016

Download references

Acknowledgments

Yingjie Fan acknowledges financial support from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Schwartz, F., Voß, S. et al. Stochastic programming for flexible global supply chain planning. Flex Serv Manuf J 29, 601–633 (2017). https://doi.org/10.1007/s10696-016-9261-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-016-9261-7

Keywords

Navigation