Skip to main content
Log in

Multi-size container transportation by truck: modeling and optimization

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

This paper investigates a multi-size container truck transportation (MSCTT) problem in which a truck can carry one 40 ft or two 20 ft containers. This problem considers both fixed and flexible drayage orders. A state-transition-based method is presented to formulate the MSCTT problem. The problem is modeled as a sequence-dependent multiple-traveling salesman problem with social constraints in which the distances between cities depend on the sequence of cities visited before. Three tree search procedures and an improved reactive tabu search (IRTS) algorithm are designed to solve the MSCTT problem. They are validated and evaluated based on randomly generated instances extensively. The IRTS algorithm can solve small instances to optimality within less than 1 min. Furthermore, it outperforms the existing reactive tabu search algorithm and can solve realistic-sized instances efficiently. Several interesting findings about the MSCTT problem are presented. Finally, the IRTS algorithm is also applied to a real-world data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Battiti R, Tecchiolli G (1994) The reactive tabu search. ORSA J Comput 6(2):126–140

    Article  MATH  Google Scholar 

  • Bektaş T, Laporte G (2011) The pollution-routing problem. Transp Res Part B Methodol 45(8):1232–1250

    Article  Google Scholar 

  • Berbeglia G, Cordeau J-F, Laporte G (2010) Dynamic pickup and delivery problems. Eur J Oper Res 202(1):8–15

    Article  MATH  Google Scholar 

  • Blochliger I, Zufferey N (2008) A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput Oper Res 35(3):960–975

    Article  MathSciNet  Google Scholar 

  • Braekers K, Janssens GK, Caris A (2011) Challenges in managing empty container movements at multiple planning levels. Transp Rev 31(6):681–708

    Article  Google Scholar 

  • Braekers K, Caris A, Janssens GK (2013) Integrated planning of loaded and empty container movements. OR Spectr 35(2):457–478

    Article  MATH  MathSciNet  Google Scholar 

  • Caris A, Janssens GK (2009) A local search heuristic for the pre-and end-haulage of intermodal container terminals. Comput Oper Res 36(10):2763–2772

    Article  MATH  Google Scholar 

  • Castellani U, Fusiello A, Gherardi R, Murino V (2007) Automatic selection of MRF control parameters by reactive tabu search. Image Vis Comput 25(11):1824–1832

    Article  Google Scholar 

  • Cheung RK, Shi N, Powell WB, Simao HP (2008) An attribute-decision model for cross-border drayage problem. Transp Res Part E Logist Transp Rev 44(2):217–234

    Article  Google Scholar 

  • Chew EP, Günther HO, Kim KH, Kopfer H (2011) Maritime container logistics and onshore transportation systems (Part 1). Flex Serv Manuf J 23(4):361–363

    Article  Google Scholar 

  • Chung KH, Ko CS, Shin JY, Hwang H, Kim KH (2007) Development of mathematical models for the container road transportation in Korean trucking industries. Comput Ind Eng 53(2):252–262

    Article  Google Scholar 

  • Coslovich L, Pesenti R, Ukovich W (2006) Minimizing fleet operating costs for a container transportation company. Eur J Oper Res 171(3):776–786

    Article  MATH  Google Scholar 

  • da Silva LGW, Fernandes Pereira RA, Abbad JR, Sanches Mantovani JR (2008) Optimised placement of control and protective devices in electric distribution systems through reactive tabu search algorithm. Electr Power Syst Res 78(3):372–381

    Article  Google Scholar 

  • Datta T, Srinidhi N, Chockalingam A, Rajan BS (2010) Random-restart reactive tabu search algorithm for detection in large-MIMO systems. Commun Lett IEEE 14(12):1107–1109

    Article  Google Scholar 

  • Escudero A, Muñuzuri J, Guadix J, Arango C (2013) Dynamic approach to solve the daily drayage problem with transit time uncertainty. Comput Ind 64(2):165–175

    Article  Google Scholar 

  • Glover F (1989) Tabu search: part I. ORSA J Comput 1(3):190–206

    Article  MATH  Google Scholar 

  • Günther HO, Kim KH (2006) Container terminals and terminal operations. OR Spectr 28(4):437–445

    Article  Google Scholar 

  • Ileri Y, Bazaraa M, Gifford T, Nemhauser G, Sokol J, Wikum E (2006) An optimization approach for planning daily drayage operations. CEJOR 14(2):141–156

    Article  MATH  Google Scholar 

  • Imai A, Nishimura E, Current J (2007) A Lagrangian relaxation-based heuristic for the vehicle routing with full container load. Eur J Oper Res 176(1):87–105

    Article  MATH  MathSciNet  Google Scholar 

  • Jula H, Dessouky M, Ioannou P, Chassiakos A (2005) Container movement by trucks in metropolitan networks: modeling and optimization. Transp Res Part E Logist Transp Rev 41(3):235–259

    Article  Google Scholar 

  • Kopfer HW, Schönberger J, Kopfer H (2013) Reducing greenhouse gas emissions of a heterogeneous vehicle fleet. Flex Serv Manuf (FSM). doi:10.1007/s10696-013-9180-9

  • Lai M (2013) Models and algorithms for the empty container repositioning and its integration with routing problems. University of Cagliari

  • Long Y, Lee LH, Chew EP (2012) The sample average approximation method for empty container repositioning with uncertainties. Eur J Oper Res 222(1):65–75

    Article  MATH  Google Scholar 

  • Loo B (2010) Cross-boundary container truck congestion: the case of the Hong Kong-Pearl River Delta region. Transportation 37(2):257–274

    Article  Google Scholar 

  • Máhr T, Srour J, de Weerdt M, Zuidwijk R (2010) Can agents measure up? a comparative study of an agent-based and on-line optimization approach for a drayage problem with uncertainty. Transp Res Part C Emerg Technol 18(1):99–119

    Article  Google Scholar 

  • Meisel F, Kopfer H (2013) Synchronized routing of active and passive means of transport. OR Spectr doi:10.1007/s00291-012-0310-7

  • Namboothiri R, Erera AL (2008) Planning local container drayage operations given a port access appointment system. Transp Res Part E Logist Transp Rev 44(2):185–202

    Article  Google Scholar 

  • Parragh SN, Doerner KF, Hartl RF (2008a) A survey on pickup and delivery problems part II: transportation between pickup and delivery locations. J für Betriebswirtschaft 58(2):81–117

    Article  Google Scholar 

  • Parragh SN, Doerner KF, Hartl RF (2008b) A survey on pickup and delivery problems: part I: transportation between customers and depot. J für Betriebswirtschaft 58(1):21–51

    Article  Google Scholar 

  • Piecyk MI, McKinnon AC (2010) Forecasting the carbon footprint of road freight transport in 2020. Int J Prod Econ 128(1):31–42

    Article  Google Scholar 

  • Popović D, Vidović M, Nikolić M (2012) The variable neighborhood search heuristic for the containers drayage problem with time windows. In: 2012 online conference on soft computing in industrial applications, pp 1–10

  • Powell WB, Bouzaïene-Ayari B, Simão HP (2007) Dynamic models for freight transportation. In: Barnhart C, Laporte G (eds) Handbooks in operations research and management science, vol 14. Elsevier, Holland, pp 285–365

  • Reinhardt LB, Spoorendonk S, Pisinger D (2012) Solving vehicle routing with full container load and time windows. Lect Notes Comput Sci 7555(1):120–128

    Google Scholar 

  • Schönberger J, Buer T, Kopfer H (2013) A model for the coordination of 20-foot and 40-foot container movements in the hinterland of a container terminal. In: Pacino D, Voß S, Jensen RM (eds) Proceedings of international conference of computational logistics (ICCL 2013) LNCS 8197. Springer, Berlin, pp 113–127

  • Smilowitz K (2006) Multi-resource routing with flexible tasks: an application in drayage operations. IIE Trans 38(7):577–590

    Article  Google Scholar 

  • Srour FJ, Máhr T, Weerdt MMd, Zuidwijk RA (2010) MIPLIB truckload PDPTW instances derived from a real-world drayage case. In: ERIM report series research in management/finance and accounting. Erasmus Research Institute of Management (ERIM)

  • Stahlbock R, Voβ S (2008) Operations research at container terminals: a literature update. OR Spectr 30(1):1–52

    Article  MATH  Google Scholar 

  • Steenken D, Voß S, Stahlbock R (2004) Container terminal operation and operations research: a classification and literature review. OR Spectr 26(1):3–49

    Article  MATH  Google Scholar 

  • Sterzik S, Kopfer H (2013) A tabu search heuristic for the inland container transportation problem. Comput Oper Res 40(4):953–962

    Article  MathSciNet  Google Scholar 

  • Sterzik S, Kopfer H, Yun W-Y (2013) Reducing hinterland transportation costs through container sharing. Flex Serv Manuf J. doi:10.1007/s10696-012-9167-y

  • Ting C-K, Liao X-L (2013) The selective pickup and delivery problem: formulation and a memetic algorithm. Int J Prod Econ 141(1):199–211

    Article  Google Scholar 

  • Vidović M, Radivojević G, Raković B (2011) Vehicle routing in containers pickup up and delivery processes. Procedia Soc Behav Sci 20:335–343

    Article  Google Scholar 

  • Vis IFA, de Koster R (2003) Transshipment of containers at a container terminal: an overview. Eur J Oper Res 147(1):1–16

    Article  MATH  Google Scholar 

  • Wang X, Regan AC (2002) Local truckload pickup and delivery with hard time window constraints. Transp Res Part B Methodol 36(2):97–112

    Article  Google Scholar 

  • Zhang R, Yun WY, Moon I (2009) A reactive tabu search for the multi-depot container truck transportation problem. Transp Res Part E Logist Transp Rev 45E(6):904–914

    Article  Google Scholar 

  • Zhang R, Yun WY, Kopfer H (2010) Heuristic-based truck scheduling for inland container transportation. OR Spectr 32(3):787–808

    Article  MATH  Google Scholar 

  • Zhang G, Smilowitz K, Erera A (2011a) Dynamic planning for urban drayage operations. Transp Res Part E Logist Transp Rev 47(5):764–777

    Article  Google Scholar 

  • Zhang R, Yun WY, Moon IK (2011b) Modeling and optimization of a container drayage problem with resource constraints. Int J Prod Econ 133(1):351–359

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Nos. 71001019, 71021061, 70931001), the Fundamental Research Funds for the Central Universities in China (No. N120404016), and the China Postdoctoral Science Foundation (No. 2012M520642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Young Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Yun, W.Y. & Kopfer, H. Multi-size container transportation by truck: modeling and optimization. Flex Serv Manuf J 27, 403–430 (2015). https://doi.org/10.1007/s10696-013-9184-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-013-9184-5

Keywords

Navigation