Skip to main content

Advertisement

Log in

Metabolomics analysis of the potential toxicological mechanisms of diquat dibromide herbicide in adult zebrafish (Danio rerio) liver

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Although diquat is a widely used water-soluble herbicide in the world, its sublethal adverse effects to fish have not been well characterised. In this study, histopathological examination and biochemical assays were applied to assess hepatotoxicity and combined with gas chromatography–mass spectrometry (GC–MS)-based metabolomics analysis to reveal overall metabolic mechanisms in the liver of zebrafish (Danio rerio) after diquat exposure at concentrations of 0.34 and 1.69 mg·L−1 for 21 days. Results indicated that 1.69 mg·L−1 diquat exposure caused cellular vacuolisation and degeneration with nuclear abnormality and led to the disturbance of antioxidative system and dysfunction in the liver. No evident pathological injury was detected, and changes in liver biochemistry were not obvious in the fish exposed to 0.34 mg·L−1 diquat. Multivariate statistical analysis revealed differences between profiles obtained by GC–MS spectrometry from control and two treatment groups. A total of 17 and 22 metabolites belonging to different classes were identified following exposure to 0.34 and 1.69 mg·L−1 diquat, respectively. The metabolic changes in the liver of zebrafish are mainly manifested as inhibition of energy metabolism, disorders of amino acid metabolism and reduction of antioxidant capacity caused by 1.69 mg·L−1 diquat exposure. The energy metabolism of zebrafish exposed to 0.34 mg·L−1 diquat was more inclined to rely on anaerobic glycolysis than that of normal zebrafish, and interference effects on lipid metabolism were observed. The metabolomics approach provided an innovative perspective to explore possible hepatic damages on fish induced by diquat as a basis for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  • Adam A, Smith L, Cohen GM (1990) Correlation between NADPH depletion and pentose phosphate pathway stimulation by paraquat. Agris 3–4:72–74

    Google Scholar 

  • Ahboucha S, Butterworth RF (2004) Pathophysiology of hepatic encephalopathy: a new look at GABA from the molecular standpoint. Metab Brain Dis 19:331–343

    Article  CAS  PubMed  Google Scholar 

  • Åkerman G, Amcoff P, Tjärnlund U, Fogelberg K, Torrissen O, Balk L (2003) Paraquat and menadione exposure of rainbow trout (Oncorhynchus mykiss) studies of effects on the pentose-phosphate shunt and thiamine levels in liver and kidney. Chem Biol Interact 142:269–283

    Article  PubMed  Google Scholar 

  • Awad JA, Burk RF, Roberts LJ (1994) Effect of selenium deficiency and glutathione-modulating agents on diquat toxicity and lipid peroxidation in rats. J Pharmacol Exp Ther 270:858–864

    CAS  PubMed  Google Scholar 

  • Babalola OO, Wyk H (2021) Exposure Impacts of diquat dibromide herbicide formulation on amphibian larval development. Heliyon 7:e06700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baltazar MT, Dinis-Oliveira RJ, de Lourdes BM, Tsatsakis AM, Duarte JA, Carvalho F (2014) Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases-a mechanistic approach. Toxicol Lett 230:85–103

    Article  CAS  PubMed  Google Scholar 

  • Bao Z, Zhao Y, Wu A, Lou Z, Lu H, Yu Q, Fu Z, Jin Y (2020) Sub-chronic carbendazim exposure induces hepatic glycolipid metabolism disorder accompanied by gut microbiota dysbiosis in adult zebrafish (Daino rerio). Sci Total Environ 739:140081

    Article  CAS  PubMed  Google Scholar 

  • Bartell SM, Campbell KR, Lovelock CM, Nair SK, Shaw JL (2000) Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study III. Ecological process models. Environ Toxicol and Chem 19:1441–1453

    Article  CAS  Google Scholar 

  • Berry JRCR (1984) Toxicity of the herbicides diquat and endothall to goldfish. Environ Pollut 34:251–258

    Article  CAS  Google Scholar 

  • Birmingham BC, Colman B (1983) Potential phytotoxicity of diquat accumulated by aquatic plants and sediments. Water Air Soil Pollut 19:123–131

    Article  CAS  Google Scholar 

  • Bouétard A, Besnard AL, Vassaux D, Lagadic L, Coutellec MA (2013) Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis. Aquat Toxicol 126:256–265

    Article  PubMed  CAS  Google Scholar 

  • Camargo MMP, Martinez CBR (2007) Histopathology of gills, kidney and liver of a neotropical fish caged in an urban stream. Neotrop Ichthyol 5:327–336

    Article  Google Scholar 

  • Coutellec MA, Delous G, Cravedi JP, Lagadic L (2008) Effects of the mixture of diquat and a nonylphenol polyethoxylate adjuvant on fecundity and progeny early performances of the pond snail Lymnaea stagnalis in laboratory bioassays and microcosms. Chemosphere 73:326–336

    Article  CAS  PubMed  Google Scholar 

  • Cupertino M, Novaes RD, Santos EC, Bastos DSS, Santos DCMD, Fialho MDCQ, Matta SLPD (2017) Cadmium-induced testicular damage is associated with mineral imbalance, increased antioxidant enzymes activity and protein oxidation in rats. Life Sci 175:23–30

    Article  CAS  PubMed  Google Scholar 

  • Davey MP (2011) Metabolite identification, pathways, and omic integration using online databases and tools. John Wiley & Sons 709–723

  • Djurdjevic D, Djukic M, Ninkovic M, Stevanovic I, Jovanovic M, Vasic U (2013) Glutathione cycle in diquat neurotoxicity: assessed by intrastriatal pre-treatment with glutathione reductase. Acta Vet Brno 63:159–175

    Article  Google Scholar 

  • Ducrot V, Pery A, Lagadic L (2010) Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis. Philos Tr Soc B 365:3485–3494

    Article  Google Scholar 

  • Dworak M, Kim T, Mccarley RW, Basheer R (2017) Creatine supplementation reduces sleep need and homeostatic sleep pressure in rats. J Sleep Res 26:377–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Eguchi A, Sakurai K, Watanabe M, Mori C (2017) Exploration of potential biomarkers and related biological pathways for PCB exposure in maternal and cord serum: a pilot birth cohort study in Chiba, Japan. Environ Int 102:157–164

    Article  CAS  PubMed  Google Scholar 

  • Eisler H, Frhlich KU, Heidenreich E (2004) Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast. Exp Cell Res 300:345–353

    Article  CAS  PubMed  Google Scholar 

  • Emmett K (2002) Final Risk Assessment for Diquat Bromide. Washington State Department of Ecology, Washington, DC

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2008) FAO specifications and evaluations for Agricultural Pesticides. FAO. http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmps/en/. Accessed Feb 2008

  • Fontaínhas-Fernandes A, Luzio A, Garcia-Santos S, Carrola J, Monteiro S (2008) Gill histopathological alterations in Nile tilapia, Oreochromis niloticus exposed to treated sewage water. Braz Arch Biol Technol 51:1057–1063

    Article  Google Scholar 

  • Fussell KC, Udasin RG, Gray JP, Mishin V, Smith PJ, Heck DE, Laskin JD (2011) Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster cells overexpressing NADPH-cytochrome P450 reductase. Free Radic Biol Med 50:874–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galus M, Jeyaranjaan J, Smith E, Li H, Metcalfe C, Wilson JY (2013) Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. Aquat Toxicol 132–133:212–222

    Article  PubMed  CAS  Google Scholar 

  • Hiltibran RC (1972) Fate of diquat in the aquatic environment. WRC research report no. 52. University of Illinois, Urbana, pp 8–13

  • Hsu C, Zhang X, Gui W, Zhang W, Cai Z, Pan B, Gu H, Xu C, Jin G, Xu X, Manne RK, Jin Y, Yan W, Shao J, Chen T, Lin E, Ketkar A, Eoff R, Xu Z, Chen Z, Li H, Lin H (2021) Inositol serves as a natural inhibitor of mitochondrial fission by directly targeting AMPK. Mol Cell 81:3803–3819

    Article  CAS  PubMed  Google Scholar 

  • Jones GM, Vale JA (2000) Mechanisms of toxicity, clinical features, and management of diquat poisoning: a review. J Toxicol Clin Toxic 38:123–128

    Article  CAS  Google Scholar 

  • Karuppagoun De RSS, Ahuja M, Buabeid M, Parameshwaran K, Abdel-Rehman E, Suppiramaniam V, Dhanasekaran M (2012) Investigate the chronic neurotoxic effects of diquat. Neurochem Res 37:1102–1111

    Article  CAS  Google Scholar 

  • Lam SH, Ung CY, Hlaing MM, Hu J, Li Z, Mathavan S, Gong Z (2013) Molecular insights into 4-nitrophenol-induced hepatotoxicity in zebrafish: transcriptomic, histological and targeted gene expression analyses. Biochim Biophys Acta 1830:4778–4789

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wang J, Lu Z, Wei D, Yang M, Kong L (2014) 1NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus). Aquat Toxicol 146:82–92

    Article  PubMed  CAS  Google Scholar 

  • Li MH, Ruan LY, Zhou JW, Fu YH, Jiang L, Zhao H, Wang JSJAT (2017) Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure. Aquat Toxicol 188:159–169

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Piao X, Zhang Q, Wang D, Piao X, Kim S (2010) Protective effects of Forsythia suspensa extract against oxidative stress induced by diquat in rats. Food Chem Toxicol 48:764–770

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquatc Toxicol 101:13–30

    Article  CAS  Google Scholar 

  • McCuaig LM, Martyniuk CJ, Marlatt VL (2020) Morphometric and proteomic responses of early-life stage rainbow trout (Oncorhynchus mykiss) to the aquatic herbicide diquat dibromide. Aquat Toxicol 222:105446

    Article  CAS  PubMed  Google Scholar 

  • McGill MR (2016) The past and present of serum aminotransferases and the future of liver injury biomarkers. Excli J 15:817–828

    PubMed  PubMed Central  Google Scholar 

  • Mesnage R, Renney G, Séralini GE, Ward M, Antoniou MNJSR (2017) Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of roundup herbicide. Sci Rep 7:39328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagato EG, Simpson AJ, Simpson MJ (2016) Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A. Aquat Toxicol 170:175–186

    Article  CAS  PubMed  Google Scholar 

  • Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T, Kitagishi Y (2017) PI3K/AKT signalling mediated by G protein coupled receptors is involved in neurodegenerative Parkinson’s disease (Review). Int J Mol Med 39:253–260

    Article  CAS  PubMed  Google Scholar 

  • Negrisoli E, Martins D, Velini DE, Ferrera WLB (2003) Diquat degradation under small-tank conditions with and without egeria plants. Planta Daninha 21:93–98 (In Brazilian with English abstract)

    Article  Google Scholar 

  • Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056

    Article  CAS  PubMed  Google Scholar 

  • Oudman I, Clark JF, Brewster LM (2013) The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: a systematic review. PLoS ONE 8:e52879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco R, Gallart T, Lluis C, Franco R (2007) Role of glutamate on T-cell mediated immunity. J Neuroimmunol 185:9–19

    Article  CAS  PubMed  Google Scholar 

  • Park A, Koh HC (2019) NF-κB/mTOR-mediated autophagy can regulate diquat-induced apoptosis. Arch Toxicol 93:1239–1253

    Article  CAS  PubMed  Google Scholar 

  • Pateiro-Moure M, Arias-Estévez M, Simal-Gándara J (2010) Competitive and non-competitive adsorption/desorption of paraquat, diquat and difenzoquat in vineyard-devoted soils. J hazard mater 178:194–201

  • Paulino MG, Rossi PA, Venturini FP, Tavares D, Elisabete da Silva Souza N, Sakuragui MM, Moraes G, Terezan AP, Fernandes JB, Giani A, Fernandes MN (2017) Hepatotoxicity and metabolic effects of cellular extract of cyanobacterium Radiocystis fernandoi containing microcystins RR and YR on neotropical fish (Hoplias malabaricus). Chemosphere: Environ toxicol risk assessment 175:431–439

  • Rangasamy B, Hemalatha D, Shobana C, Nataraj B, Ramesh M (2018) Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere 213:423–433

    Article  CAS  PubMed  Google Scholar 

  • Rawlings JM, Wyatt I, Heylings JR (1994) Evidence for redox cycling of diquat in rat small intestine. Biochem Pharmacol 47:1271–1274

    Article  CAS  PubMed  Google Scholar 

  • Ritter AM, Shaw JL, William WM, Travis K (2000) Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study. I. Probabilistic Exposure Estimates Environ Toxicol Chem 19:749–759

    Article  CAS  Google Scholar 

  • Rodwell VM, Maeyes PA (1988) Metabolism of proteins and amino acids. Rev Biochem Lange Medical Publications, California 265–319

  • Rogers LK, Bates CM, Welty SE, Smith C (2006) Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice. Toxicol Appl Pharm 217:289–298

  • Rui L (2014) Energy metabolism in the liver. Compr Physiol 4:177–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Salamanca N, Giráldez I, Morales E, de La Rosa I, Herrera M (2020) Phenylalanine and tyrosine as feed additives for reducing stress and enhancing welfare in gilthead seabream and meagre. Animals 11:45

    Article  PubMed Central  Google Scholar 

  • Sanchez W, Palluel O, Lagadic L, Aït-Aïssa S, Porcher JM (2006) Biochemical effects of nonylphenol polyethoxylate adjuvant, diquat herbicide and their mixture on the three-spined stickleback (Gasterosteus aculeatus L.). Ma Environ Res 62:29–33

    Article  CAS  Google Scholar 

  • Sandy MS, Moldeus P, Ross D, Smith MT (1987) Cytotoxicity of the redox cycling compound diquat in isolated hepatocytes: involvement of hydrogen peroxide and transition metals. Arch Biochem Biophys 259:29–37

    Article  CAS  PubMed  Google Scholar 

  • Schoonen WG, Kloks CP, Ploemen JP, Horbach GJ, Smit MJ, Zandberg P, Mellema JR, Zuylen CT, Tas AC, van Nesselrooij JH, Vogels JT (2007) Sensitivity of 1H NMR analysis of rat urine in relation to toxicometabonomics. Part I: Dose-dependent toxic effects of bromobenzene and paracetamol. Toxicol Sci 2007:271–285

    Article  CAS  Google Scholar 

  • Sechi GP, Agnetti V, Piredda M, Canu M, Deserra F, Omar HA, Rosati G (1992) Acute and persistent parkinsonism after use of diquat. Neurology 42:261–263

    Article  CAS  PubMed  Google Scholar 

  • Shen WJ, Zhang X, Zhao ZA, Fang ZG, Xie X, Wang R, Hu WT (2021) Histological changes and chronic liver injury of diquat in zebrafish (Brachydanio rerio). J Agro-Environ Sci 40:949–956 (In Chinese with English abstract)

    Google Scholar 

  • Siemering GS, Hayworth JD, Greenfield BK (2008) Assessment of potential aquatic herbicide impacts to California aquatic ecosystems. Arch Environ Con Tox 55:415–431

    Article  CAS  Google Scholar 

  • Simon L M, Nemcsók J, Boross L (1983) Studies on the effect of paraquat on glycogen mobilization in liver of common carp (Cyprinus carpio L.). Comp Biochem Physiol C Toxicol Pharmacol 75:167–169

  • Simsiman GV, Chesters G (1976) Persistence of diquat in the aquatic environment. Water Res 10:105–112

    Article  CAS  Google Scholar 

  • Singh M, Murthy V, Ramassamy C (2013) Neuroprotective mechanisms of the standardized extract of Bacopa monniera in a paraquat/diquat-mediated acute toxicity. Neurochem Int 62:530–539

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Hughes H, Lauterburg B, Mitchell J (1985) Oxidant stress and hepatic necrosis in rats treated with diquat. J Pharmacol Exp Ther 235:172–177

    CAS  PubMed  Google Scholar 

  • Song SB, Xu Y, Zhou BS (2006) Effects of hexachlorobenzene on antioxidant status of liver and brain of common carp (Cyprinus carpio). Chemosphere 65:699–706

    Article  CAS  PubMed  Google Scholar 

  • Speers-Roesch B, Sandblom E, Lau GY, Farrell AP, Richards JG (2010) Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia. Am J Physiol Regul Integr Comp Physiol 298:104–119

    Article  CAS  Google Scholar 

  • Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe MJEJON (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20:144–160

    Article  PubMed  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (1995) Reregistration decision diquat dibromide case 0288. Environmental protection agency office of pesticide programs special review and reregistration. US EPA, Washington, DC

  • Wang J, Guo J (2019) Inositol deficiency induces autophagy impairing via PI3K/Akt/mTOR/p70S6K signaling (p11–032-19). Curr Dev Nutr 3:994

    Google Scholar 

  • Wang X, Tan Z, Chen S, Gui L, Leung JYS (2021) Norethindrone causes cellular and hepatic injury in zebrafish by compromising the metabolic processes associated with antioxidant defence: Insights from metabolomics. Chemosphere 275:130049

    Article  CAS  PubMed  Google Scholar 

  • Wang XH, Souders CL, Zhao YH, Martyniuk CJ (2018) Mitochondrial bioenergetics and locomotor activity are altered in zebrafish (Danio rerio) after exposure to the bipyridylium herbicide diquat. Toxicol Lett 283:13–20

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhu W, Wang D, Teng M, Yan J, Miao J, Zhou Z (2017) H-1 NMR-based metabolomics analysis of adult zebrafish (Danio rerio) after exposure to diniconazole as well as its bioaccumulation behavior. Chemosphere 168:1571–1577

    Article  CAS  PubMed  Google Scholar 

  • World Health Organisation (WHO) (2004) Diquat in drinking water. WHO, Background document for development of who guidelines for drinking-water quality

    Google Scholar 

  • Xu HD, Wang JS, Li MH, Liu Y, Chen T, Jia AQ (2015) 1)H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus. Aquat Toxicol 159:69–80

    Article  CAS  PubMed  Google Scholar 

  • Xue H (2011) New role of glutamate as an immunoregulator via glutamate receptors and transporters. Front Biosci 3:1007–1020

    Article  Google Scholar 

  • Yamamoto Y (2011) Marker of oxidative stress in circulation and in tissue. Front Gastrointestinal Res 29:64–70

    Article  CAS  Google Scholar 

  • Zhang H, Zhao L (2017) Influence of sublethal doses of acetamiprid and halosulfuron-methyl on metabolites of zebra fish (Brachydanio rerio). Aquat Toxicol 191:85–94

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Lu L, Zhao X, Zhao S, Gu X, Du W, Wei H, Ji R, Zhao L (2019) Metabolomics reveal the “invisible” responses of spinach plants exposed to CeO2 nanoparticles. Environ Sci Technol 53:6007–6017

    Article  CAS  PubMed  Google Scholar 

  • Ziarrusta H, Mijangos L, Picart-Armada S, Irazola M, Perera-Lluna A, Usobiaga A, Prieto A, Etxebarria N, Olivares M, Zuloaga O (2018) Non-targeted metabolomics reveals alterations in liver and plasma of gilt-head bream exposed to oxybenzone. Chemosphere 211:624–631

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant numbers [31902418]), the Natural Science Foundation of Hainan Province (Grant numbers [319QN160]), and the Research Initiation Fund Project of Hainan University (Grant numbers [KYQD(ZR)19108]).

Author information

Authors and Affiliations

Authors

Contributions

YX and XL performed the experiment, wrote the manuscript and contributed equally to this work; MZ, TR and RG participated in the performance of the experiments and critical revision; ZL contributed to manuscript preparation; WS did the initial analysis of the data; RW, XX and YS helped perform the analysis with constructive discussions; WH contributed to the conception of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenting Hu.

Ethics declarations

Ethics approval

Fish care and experimental protocols were carried out in accordance with the Provision and General Recommendation of Chinese Experimental Animals Administration Legislation and approved by the Animal Ethical Committee of Hainan University.

Consent to participate

All authors have agreed to participate in this work.

Consent for publication

All authors have approved the submission and publication of the present manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 277 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Lin, X., Zhou, M. et al. Metabolomics analysis of the potential toxicological mechanisms of diquat dibromide herbicide in adult zebrafish (Danio rerio) liver. Fish Physiol Biochem 48, 1039–1055 (2022). https://doi.org/10.1007/s10695-022-01101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01101-4

Keywords

Navigation