Skip to main content
Log in

Carotenoid composition in wild-caught spotted scat (Scatophagus argus) broodstocks: effects on gonad development

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The carotenoid reserves of broodstocks have a considerable impact on reproductive performance, maturity, fecundity, spawning, and yolk-sac larvae quality. The purpose of this study was to elucidate the most effective strategy for enriching broodstock in artificial breeding programs by examining changes in the carotenoid profile of wild-caught spotted scat (Scatophagus argus) broodstocks during the reproductive season. The predominant carotenoids such as fucoxanthin, astaxanthin, lutein, and β-carotenoids were examined in muscle, liver, and gonad (testis and ovary) samples from both the genders. The results revealed that total carotenoid levels differed significantly (p < 0.05) among tissues during sexual maturation. The muscle fucoxanthin levels increased gradually (0.014 ± 0 .01 < 0.017 ± 0.00 < 0.019 ± 0.01 mg/100 g) during testicular maturation and were comparatively higher than that of the liver and testis. The astaxanthin content of the ovary was relatively low and increased with ovarian maturation (2.013 ± 0.18 < 6.106 ± 0.28 < 8.871 ± 0.73 mg/100 g). The scat’s mature ovary (9.446 ± 0.53 mg/100 g) had a higher concentration of lutein in comparison with testis (0.821 ± 0.07 mg/100 g). In the testis, the highest concentration of β-carotene could be observed during the mature stage (1.765 ± 0.08 mg/100 g). In female scat, the β-carotene content of muscle showed an inverse relationship with maturation indicated by a gradual decrease from immature stage. Finally, it is proposed that carotenoids are preferentially mobilized and conserved in the gonads, which are indispensable to improve gonadal development and the productive potential of S. argus, a leading candidate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data analyzed during this study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Aas GH, Bjerkeng B, Storebakken T, Ruyter B (1999) Blood appearance, metabolic transformation and plasma transport proteins of 14C-astaxanthin in Atlantic salmon (Salmosalar L.). Fish Physiol Biochem 21:325–334

    Article  CAS  Google Scholar 

  • Abbas S, Haider MS, Kafayet F, Ashraf S, Masood A, Batool M (2020) Effect of citrus peels mingled diets on Carassius auratus coloration. Pak J Zool 52:519

    CAS  Google Scholar 

  • Abou-Seedo F, Dadzie S, Al-Kanaan K (2003) Histology of ovarian development and maturity stages in the yellowfin seabream, Acanthopagrus latus (Teleostei: Sparidae) (Hottuyn, 1782) reared in cages. Kuwait J Sci Eng 30:121–138

  • Ahmadi MR, Bazyar AA, Safi S, Ytrestøyl T, Bjerkeng B (2006) Effects of dietary astaxanthin supplementation on reproductive characteristics of rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 22:388–394

    Article  CAS  Google Scholar 

  • Alijanpour N, Bani A, Tizkar B, Amiri K, Nazari RM (2015) Carotenoid content and colour of eggs in migratory broodstock kutum (Rutilus frisii kutum Kamensky, 1901) (Osteichthyes: Cyprinidae) in the Shirud and Tajan Rivers, south Caspian Sea. Ital J Zool 82:25–32

    Article  CAS  Google Scholar 

  • Amarasinghe US, Amarasinghe MD, Nissanka C (2002) Investigation of the Negombo estuary (Sri Lanka) brush park fishery, with an emphasis on community-based management. Fish Manag Ecol 9:41–56

    Article  Google Scholar 

  • Anderson E (1968) Cortical alveoli formation and vitellogenesis during oocyte differentiation in the pipe fish, Syngnathus fuscus, and the killifish, Fundulus heteroclitus. J of Morph 125:23–59

  • Begovac PC, Wallace RA (1988) Stages of oocyte development in the pipefish, Syngnathus scovelli. J Morphol 197:353–369

  • Bell JG, McEvoy J, Tocher DR, Sargent JR (2000) Depletion of α-tocopherol and astaxanthin in Atlantic salmon (Salmo salar) affects autoxidative defense and fatty acid metabolism. J Nutr 130:1800–1808

    Article  CAS  PubMed  Google Scholar 

  • Biswas G, Sundaray JK, Bhattacharyya SB, Kailasam M, Prem K, Krishna S, Ghoshal TK (2016) Evaluation of growth performance and survival of wild collected spotted scat, Scatophagus argus (Linnaeus, 1766) during rearing of fry to marketable size juveniles for aquarium trade at varied stocking densities. J Indian Soc Coast Agric Res 34:120–126

    Google Scholar 

  • Bjerkeng B, Storebakken T, Liaaen-Jensen S (1992) Pigmentation of rainbow trout from start feeding to sexual maturation. Aquaculture 108:333–346

    Article  CAS  Google Scholar 

  • Bjerkeng B, Johnsen K, Mayer I, Storebakken T, Nilssen KJ (1999) Influence of 11-ketotestosterone, 17β-estradiol, and 3, 5, 3′-triiodo-L-thyronine on distribution and metabolism of carotenoids in Arctic charr, Salvelinus alpinus L. Fish Physiol Biochem 21:353–364

    Article  CAS  Google Scholar 

  • Cai ZP, Wang Y, Hu JW, Zhang JB, Lin YG (2010) Reproductive biology of Scatophagus argus and artificial induction of spawning. J Trop Ocean 29:180–185

    Google Scholar 

  • Carneiro WF, Castro TFD, Orlando TM, Meurer F, De Jesus Paula DA, Virote BDCR, Murgas LDS (2020) Replacing fish meal by Chlorella sp. meal: effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture 528:735612

    Article  CAS  Google Scholar 

  • Chang SL (1997) Studies on the early development and larval rearing of spotted scat (Scatophagus argus). J Taiwan Fish Res 5:41–49

    Google Scholar 

  • Christiansen R, Torrissen OJ (1997) Effects of dietary astaxanthin supplementation on fertilization and egg survival in Atlantic salmon (Salmo salar L.). Aquaculture 153:51–62

    Article  CAS  Google Scholar 

  • Christiansen R, Glette J, Lie Ø, Torrissen OJ, Waagbø R (1995) Antioxidant status and immunity in Atlantic salmon, Salmo salar L., fed semi-purified diets with and without astaxanthin supplementation. J Fish Dis 18:317–328

    Article  CAS  Google Scholar 

  • Central Institute of Brackishwater Aquaculture (CIBA) (2012) Annual report 2011–2012. ICAR-CIBA publication, Chennai

    Google Scholar 

  • Dadzie S, Abou-Seedo F, Al‐Shallal T (2000) Reproductive biology of the silver pomfret, Pampus argenteus (Euphrasen), in Kuwait waters. J of Appl Ichthyol 16:247–253

  • Darachai J, Piyatiratitivorakul S, Menasveta P, Oates CG (1999) Effect of astaxanthin on growth and survival of Penaeus monodon larvae, Proceedings of the 37th Kasetsart University Annual Conference, pp 36–41

  • El-Gamal MM, Othman SI, Abdel-Rahim MM, Mansour AT, Alsaqufi AS, El Atafy MM, Allam AA (2020) Palaemon and artemia supplemented diet enhances sea bass, Dicentrarchus labrax, broodstock reproductive performance and egg quality. Aquac Rep 16:100290

    Article  Google Scholar 

  • Foote CJ, Brown GS, Hawryshyn CW (2004) Female colour and male choice in sockeye salmon: implications for the phenotypic convergence of anadromous and nonanadromous morphs. Anim Behav 67:69–83

    Article  Google Scholar 

  • Garratt M, Brooks RC (2012) Oxidative stress and condition-dependent sexual signals: more than just seeing red. Proc R Soc B Biol Sci 279:3121–3130

    Article  Google Scholar 

  • Gandhi V, Venkatesan V, Ramamoorthy N (2014) Reproductive biology of the spotted scat Scatophagus argus (Linnaeus, 1766) from Mandapam waters, south-east coast of India. Ind J Fish 61:55–59

    Google Scholar 

  • Ghorbankhah M, Bani A (2021) Inherent immunological parameters in kutum, Rutilus frisii, larvae obtained from the adult females with orange and green eggs. J Fish Biol 98:572–576

    Article  CAS  PubMed  Google Scholar 

  • Gomes E, Dias J, Silva P, Valente L, Empis J, Gouveia L, Bowen J, Young A (2002) Utilization of natural and synthetic sources of carotenoids in the skin pigmentation of gilthead seabream (Sparus aurata). Eur Food Res Technol 214:287–293

    Article  CAS  Google Scholar 

  • Goswami UC (2011) Metabolism and utilization of pigment molecules in designing feeds for freshwater ornamental fish and crustaceans. NPH Publication, New Delhi, pp 379–394

    Google Scholar 

  • Goswami J, Goswami UC (2012) Carotenoids pigmentation in Polyacanthus fasciatus during spawning period. J Pharmacy 2:05–08

    Google Scholar 

  • Guillou A, Choubert G, Storebakken T, De la Noüet J, Kaushik S (1989) Bioconversion pathway of astaxanthin into retinol 2 in mature rainbow trout (Salmo gairdneri Rich.). Comp Biochem Physiol B Comp Biochem 94:481–485

    Article  Google Scholar 

  • Gupta SK, Jha AK, Pal AK, Venkateshwarlu G (2007) Use of natural carotenoids for pigmentation in fishes. Nat Prod Rad 6:46–49

    Google Scholar 

  • Gupta S, Banerjee S (2014) Indigenous Ornamental Fish Trade of West Bengal. Narendra Publishing House, New Delhi, pp. 63 

  • Hamdorf K (1960) Die Beeinflussung der Embryonal-und Larvalentwicklung der Regenbogenforelle (salmo irideus Gibb) durch Strahlung im sichtbaren Bereich. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 42:525–565

    Google Scholar 

  • Harris LE (1984) Effects of a brood fish diet fortified with canthaxanthin on female fecundity and egg color. Aquaculture 43:179–183

    Article  CAS  Google Scholar 

  • Harrison KE (1990) The role of nutrition in maturation, reproduction and embryonic development of decapod crustacean: a review. J Shellfish Res 9:1–28

    Google Scholar 

  • Hatlen B, Arnesen AM, Jobling M (1996) Muscle carotenoid concentrations in sexually maturing and immature Arctic charr, Salvelinus alpinus (L.). Aquac Nutr 2:207–212

    Article  CAS  Google Scholar 

  • Hiramatsu N, Todo T, Sullivan CV, Schilling J, Reading BJ, Matsubara T, Hara A (2015) Ovarian yolk formation in fishes: molecular mechanisms underlying formation of lipid droplets and vitellogenin-derived yolk proteins. Gen Comp Endocrinol 221:9–15

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo MS, Fernandez-Palacios H, Tacon AGJ (2001) Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197:25–42

    Article  Google Scholar 

  • Jayaprakas V, Balakrishnan Nair N (1981) Maturation and spawning in the pearl spot Etroplus surafensis (Bloch). Proc Indian Natl Sci Acad B 47(6):828–836

    Google Scholar 

  • Jitariu M, Chera E, Duca E, Linck G, Rotimberg P, Szilagyi I (1975) Lipidocarotenoid metabolism in Salmo gairdneri during embryogenesis. Rev Roum Biol Anim 20:269–274

    CAS  Google Scholar 

  • Kalinowski CT, Robaina LE, Fernandez-Palacios H, Schuchardt D, Izquierdo MS (2005) Effect of different carotenoid sources and their dietary levels on red porgy (Pagrus pagrus) growth and skin colour. Aquaculture 244:223–231

    Article  CAS  Google Scholar 

  • Katsuyama M, Matsuno T (1988) Carotenoid and vitamin A, and metabolism of carotenoids, β-carotene, canthaxanthin, astaxanthin, zeaxanthin, lutein and tunaxanthin in tilapia Tilapia nilotica. Comp Biochem Physiol B Comp Biochem 90:131–139

    Article  Google Scholar 

  • Kawakami T, Tsushima M, Katabami Y, Mine M, Ishida A, Matsuno T (1998) Effect of β, β-carotene, β-echinenone, astaxanthin, fucoxanthin, vitamin A and vitamin E on the biological defense of the sea urchin Pseudocentrotus depressus. J Exp Mar Biol Ecol 226:165–174

    Article  CAS  Google Scholar 

  • Kiernan J K (1990) Histological and Histochemical Methods theory and practice second edition. Pergamon Press plc., pp 433

  • Kitahara T (1984) Behavior of carotenoids in the chum salmon Oncorhynchus keta during development. Bull Japan Soc Sci Fish 50:531–536

    Article  CAS  Google Scholar 

  • Lagler KF (1956) Enumeration of fish eggs in fresh water fishery biology. WMC Brown Company Publisher, Dubuque, pp 106–110

    Google Scholar 

  • Lawson EO (2011) Testicular maturation and reproductive cycle in mudskipper, Periophthalmus papilio (Bloch and Schneider 1801) from Lagos lagoon, Nigeria. The J of American Sci 7:48–59

  • Lorenz RT (1998) A review of the carotenoid, astaxanthin, as a pigment source and vitamin for cultured Penaeus prawn. Naturose Tech Bull 51:1–7

    Google Scholar 

  • Lozano GA (1994) Carotenoids, parasites, and sexual selection. Oikos 70:309–311

  • Lim KC, Yusoff FM, Shariff M, Kamarudin MS (2018) Astaxanthin as feed supplement in aquatic animals. Rev Aquac 10:738–773

    Article  Google Scholar 

  • Lim KC, Yusoff FM, Shariff M, Kamarudin MS, Nagao N (2019) Dietary supplementation of astaxanthin enhances hemato-biochemistry and innate immunity of Asian seabass, Lates calcarifer (Bloch, 1790). Aquaculture 512:734339

    Article  CAS  Google Scholar 

  • Lim KC, Yusoff FM, Shariff M, Kamarudin MS (2021) Dietary astaxanthin augments disease resistance of Asian seabass, Lates calcarifer (Bloch, 1790), against Vibrio alginolyticus infection. Fish Shellfish Immunol 114:90–101

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Qu YK, Wang AM, Yu YB, Yang WP, Lv F, Nie Q (2019) Effects of carotenoids on the growth performance, biochemical parameters, immune responses and disease resistance of yellow catfish (Pelteobagrus fulvidraco) under high-temperature stress. Aquaculture 503:293–303

    Article  CAS  Google Scholar 

  • Madhavi M, Kailasam M, Subburaj R, Thiagarajan G, Musthafa MS (2022) Seasonal changes in the milt quality of spotted scat, Scatophagus argus: implications for artificial propagation. Theriogenology 177:42–49

    Article  CAS  PubMed  Google Scholar 

  • Maoka T (2011) Carotenoids in marine animals. Mar Drugs 9:278–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74:1–16

    Article  CAS  PubMed  Google Scholar 

  • Marques da Cunha L, Wilkins LG, Menin L, Ortiz D, Vocat-Mottier V, Wedekind C (2018) Consumption of carotenoids not increased by bacterial infection in brown trout embryos (Salmo trutta). PLoS ONE 13:e0198834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Álvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 15:75–88

    Article  Google Scholar 

  • McGraw KJ, Nolan PM, Crino OL (2011) Carotenoids bolster immunity during moult in a wild songbird with sexually selected plumage coloration. Biol J Linn Soc 102:560–572

    Article  Google Scholar 

  • McMillan D B (2007) Fish histology: female reproductive systems. Springer Science & Business Media

  • Mohammed Y, Ye D, He M, Wang H, Li Y, Han D, Sun Y (2021) Induction of biosynthesis of ketocarotenoid from β-carotene in fish embryos. Aquaculture 542:736863

    Article  CAS  Google Scholar 

  • Morioka S, Tanaka K, Yurimoto T, Kassim FM, Okamura K (2020) Growth and reproductive status of the spotted scat Scatophagus argus in mangrove estuary in Matang Mangrove Forest Reserve, Malaysia. Japan Agric Res Q 54:361–368

    Article  CAS  Google Scholar 

  • Murza IG (1983) Spermatogenesis and reproductive cycle of male Atlantic salmon, Salmo salar L. 2. Seasonal dynamics of spermatogenesis and reproductive cycle of L.2. Seasonal dynamics of spermatogenesis and reproductive cycle of dwarfed and intermediate salmon males in various parts of the distribution range (in Russian). Sbornik Nauchnykh Trudov 200:78–106

    Google Scholar 

  • Murza IG, Khristoforov OL (1984) Seasonality of gametogenesis and gonad maturity scales in female and male sea trout (in Russian). Sbornik nauchnykh trudov 220:19–41

  • Nishida Y, Nawaz A, Hecht K, Tobe K (2022) Astaxanthin as a novel mitochondrial regulator: a new aspect of carotenoids, beyond antioxidants. Nutrients 14:107

    Article  CAS  Google Scholar 

  • Olson VA, Owens IP (1998) Costly sexual signals: are carotenoids rare, risky or required? Trend Ecol Evol 13:510–514

    Article  CAS  Google Scholar 

  • Patnik LK (2001) Studies on total carotenoids in the nonconventional fish Priacanthus hamrur (FORSSKAL): dissertation submitted in partial fulfillment of degree of Master of Science in (Mariculture). Central Institute of Fisheries Education

  • Pickova J, Kiessling A, Pettersson A, Dutta PC (1998) Comparison of fatty acid composition and astaxanthin content in healthy and by M74 affected salmon eggs from three Swedish river stocks. Comp Biochem Physiol B Biochem Mol Biol 120:265–271

    Article  Google Scholar 

  • Plack PA, Kon SK (1961) A comparative survey of the distribution of vitamin A aldehyde in eggs. Biochem J 81:561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam M (1991) A review of the nature, function, variability, and supply of pigments in salmonid fish. Aquac Environ 16:245–263

    Google Scholar 

  • Rajasingh H, Våge DI, Pavey SA, Omholt SW (2007) Why are salmonids pink? Can J Fish Aquat Sci 64:1614–1627

    Article  Google Scholar 

  • Rao AC, Krishnan L (2011) Biochemical composition and changes in biological indices associated with maturation of the ovary in the spiny cheek grouper Epinephelus diacanthus (Valenciennes, 1828). Ind J Fish 58:45–52

    Google Scholar 

  • Rashidian G, Rainis S, Prokić MD, Faggio C (2020) Effects of different levels of carotenoids and light sources on swordtail fish (Xiphophorus helleri) growth, survival rate and reproductive parameters. Nat Prod Res 35:3675–3686

    Article  PubMed  CAS  Google Scholar 

  • Riddle MR, Hu CK (2021) Fish models for investigating nutritional regulation of embryonic development. Dev Biol 476:101–111

    Article  CAS  PubMed  Google Scholar 

  • Salze G, Tocher DR, Roy WJ, Robertson DA (2005) Egg quality determinants in cod (Gadusmorhua L.): egg performance and lipids in eggs from farmed and wild broodstock. Aquac Res 36:1488–1499

    Article  CAS  Google Scholar 

  • Sawanboonchun J, Roy WJ, Robertson DA, Bell JG (2008) The impact of dietary supplementation with astaxanthin on egg quality in Atlantic cod broodstock (Gadusmorhua, L.). Aquaculture 283:97–101

    Article  CAS  Google Scholar 

  • Scabini V, Fernández-Palacios H, Robaina L, Kalinowski T, Izquierdo MS (2011) Reproductive performance of gilthead seabream (Sparus aurata L., 1758) fed two combined levels of carotenoids from paprika oleoresin and essential fatty acids. Aquac Nutr 17:304–312

    Article  CAS  Google Scholar 

  • Schwartz SJ, Patroni-Killam M (1985) Detection of cis-trans carotene isomers by two dimensional thin-layer and high-performance liquid chromatography. J Agric Food Chem 33:1160–1163

    Article  CAS  Google Scholar 

  • Shahidi F, Brown JA (1998) Carotenoid pigments in seafoods and aquaculture. Crit Rev Food Sci 38:1–67

    Article  CAS  Google Scholar 

  • Simpson BK, Haard NF (1985) The use of proteolytic enzymes to extract carotenoproteins from shrimp wastes. J Appl Biochem 7:212–222

    CAS  Google Scholar 

  • Sinha A, Asimi OA (2007) China rose (Hibiscus rosasinensis) petals: a potent natural carotenoid source for goldfish (Carassius auratus L.). Aquac Res 38:1123–1128

  • Suhnel S, Lagreze F, Ferreira JF, Campestrini LH, Maraschin M (2009) Carotenoid extraction from the gonad of the scallop Nodipecten nodosus (Linnaeus, 1758) (Bivalvia: Pectinidae). Braz J Biol 69:209–215

    Article  CAS  PubMed  Google Scholar 

  • Sullivan M, Brown AC, Clotfelter ED (2014) Dietary carotenoids do not improve motility or antioxidant capacity in cichlid fish sperm. Fish Physiol Biochem 40:1399–1405

    Article  CAS  PubMed  Google Scholar 

  • Tachibana K, Yagi M, Hara K, Mishima T, Tsuchimoto M (1997) Effects of feeding of β-carotene-supplemented rotifers on survival and lymphocyte proliferation reaction of fish larvae Japanese parrotfish (Oplegnathus fasciatus) and spotted parrotfish (Oplegnathus punctatus): preliminary trials. Hydrobiologia 358:313–316

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Torrissen OJ (1984) Pigmentation of salmonids-effect of carotenoids in eggs and start-feeding diet on survival and growth rate. Aquaculture 43:185–193

    Article  CAS  Google Scholar 

  • Torrissen OJ, Christiansen R (1995) Requirements for carotenoids in fish diets. J Appl Ichthyol 11:225–230

    Article  CAS  Google Scholar 

  • Tizkar B, Soudagar M, Bahmani M, Hosseini SA, Chamani M (2013) The effects of dietary supplementation of astaxanthin and β-caroten on the reproductive performance and egg quality of female goldfish (Carassius auratus). Casp J Environ Sci 11:217–231

    Google Scholar 

  • Tizkar B, Kazemi R, Alipour A, Seidavi A, Naseralavi G, Ponce-Palafox JT (2015) Effects of dietary supplementation with astaxanthin and β-carotene on the semen quality of goldfish (Carassius auratus). Theriogenology 84:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Wallace R A (1985) Vitellogenesis and oocyte growth in nonmammalian vertebrates. Developmental Biology 1:127–177

  • Watanabe T, Kiron V (1995) Broodstock management and nutritional approaches for quality offsprings in the Red Sea Bream. Broodstock management and egg and larval quality pp 154–195

  • Yan YR, Hsu KC, Yi MR, Li B, Wang WK, Kang B, Lin HD (2020) Cryptic diversity of the spotted scat Scatophagus argus (Perciformes: Scatophagidae) in the South China Sea: pre-or post-production isolation. Mar Freshw Res 71:1640–1650

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director and Dr. A. R. Thirunavukkarasu, Former Head, Fish Culture Division, Central Institute of Brackishwater Aquaculture– ICAR, Chennai, Tamil Nadu, India, for their encouragement and support in carrying out this research. We would like to express our gratitude to Dr. V. Baskaran, Principal scientist, Department of Biochemistry, CSIR – Central Food Technological Research Institute, Mysore, Karnataka, India, for providing the necessary facilities for this research.

Author information

Authors and Affiliations

Authors

Contributions

MM analyzed and interpreted the data, was a major contributor in writing e original draft, and was the corresponding author. KM analyzed and interpreted the data and was a contributor in writing the original draft. SP collected the samples and revised the manuscript.

Corresponding author

Correspondence to Madhavi Mookkan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors consent to participate.

Consent for publication

All authors read and approved the final version of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mookkan, M., Muniyandi, K. & Palaniyandi, S. Carotenoid composition in wild-caught spotted scat (Scatophagus argus) broodstocks: effects on gonad development. Fish Physiol Biochem 48, 991–1009 (2022). https://doi.org/10.1007/s10695-022-01099-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01099-9

Keywords

Navigation